Optimizing GPU programs by partial evaluation

Результат исследований: Публикации в книгах, отчётах, сборниках, трудах конференцийстатья в сборнике материалов конференциинаучнаярецензирование

Аннотация

While GPU utilization allows one to speed up computations to the orders of magnitude, memory management remains the bottleneck making it often a challenge to achieve the desired performance. Hence, different memory optimizations are leveraged to make memory being used more effectively. We propose an approach automating memory management utilizing partial evaluation, a program transformation technique that enables data accesses to be pre-computed, optimized, and embedded into the code, saving memory transactions. An empirical evaluation of our approach shows that the transformed program could be up to 8 times as efficient as the original one in the case of CUDA C naïve string pattern matching algorithm implementation.

Язык оригиналаанглийский
Название основной публикацииPPoPP 2020 - Proceedings of the 2020 25th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming
ИздательAssociation for Computing Machinery
Страницы431-432
Число страниц2
ISBN (электронное издание)9781450368186
ISBN (печатное издание)9781450368186
DOI
СостояниеОпубликовано - 19 фев 2020
Событие25th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, PPoPP 2020 - San Diego, Соединенные Штаты Америки
Продолжительность: 22 фев 202026 фев 2020

Серия публикаций

НазваниеProceedings of the ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, PPOPP

конференция

конференция25th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, PPoPP 2020
СтранаСоединенные Штаты Америки
ГородSan Diego
Период22/02/2026/02/20

Предметные области Scopus

  • Программный продукт

Fingerprint Подробные сведения о темах исследования «Optimizing GPU programs by partial evaluation». Вместе они формируют уникальный семантический отпечаток (fingerprint).

  • Цитировать

    Tyurin, A., Berezun, D., & Grigorev, S. (2020). Optimizing GPU programs by partial evaluation. В PPoPP 2020 - Proceedings of the 2020 25th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (стр. 431-432). (Proceedings of the ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, PPOPP). Association for Computing Machinery. https://doi.org/10.1145/3332466.3374507