Optimal Control of Multi-strain Epidemic Processes in Complex Networks

Elena Gubar, Quanyan Zhu, Vladislav Taynitskiy

Результат исследований: Публикации в книгах, отчётах, сборниках, трудах конференцийстатья в сборнике материалов конференции

2 Цитирования (Scopus)

Аннотация

The emergence of new diseases, such as HIV/AIDS, SARS, and Ebola, represent serious problems for the public health and medical science research to address. Despite the rapid development of vaccines and drugs, one challenge in disease control is the fact that one pathogen sometimes generates many strains with different spreading features. Hence it is of critical importance to investigate multi-strain epidemic dynamics and its associated epidemic control strategies. In this paper, we investigate two controlled multi-strain epidemic models for heterogeneous populations over a large complex network and obtain the structure of optimal control policies for both models. Numerical examples are used to corroborate the analytical results.

Язык оригиналаанглийский
Название основной публикацииGame Theory for Networks - 7th International EAI Conference, GameNets 2017, Proceedings
Место публикацииSpringer International Publishing
ИздательSpringer Nature
Страницы108-117
Число страниц10
Том212
ISBN (электронное издание)978-3-319-67540-4
ISBN (печатное издание)978-3-319-67539-8
DOI
СостояниеОпубликовано - 2017
Событие7th EAI International Conference on Game Theory for Networks, GameNets 2017 - Knoxville, Соединенные Штаты Америки
Продолжительность: 8 мая 20178 мая 2017

Серия публикаций

НазваниеLecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, LNICST
Том212
ISSN (печатное издание)1867-8211

конференция

конференция7th EAI International Conference on Game Theory for Networks, GameNets 2017
СтранаСоединенные Штаты Америки
ГородKnoxville
Период8/05/178/05/17

Предметные области Scopus

  • Компьютерные сети и коммуникации

Fingerprint Подробные сведения о темах исследования «Optimal Control of Multi-strain Epidemic Processes in Complex Networks». Вместе они формируют уникальный семантический отпечаток (fingerprint).

  • Цитировать

    Gubar, E., Zhu, Q., & Taynitskiy, V. (2017). Optimal Control of Multi-strain Epidemic Processes in Complex Networks. В Game Theory for Networks - 7th International EAI Conference, GameNets 2017, Proceedings (Том 212, стр. 108-117). (Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, LNICST; Том 212). Springer Nature. https://doi.org/10.1007/978-3-319-67540-4_10