One-Nonterminal Conjunctive Grammars over a Unary Alphabet

Результат исследований: Научные публикации в периодических изданияхстатья

9 Цитирования (Scopus)


Conjunctive grammars over an alphabet Σ={a} are studied, with the focus on the special case with a unique nonterminal symbol. Such a grammar is equivalent to an equation X=φ{symbol}(X) over sets of natural numbers, using union, intersection and addition. It is shown that every grammar with multiple nonterminals can be encoded into a grammar with a single nonterminal, with a slight modification of the language. Based on this construction, the compressed membership problem for one-nonterminal conjunctive grammars over {a} is proved to be EXPTIME-complete; the same problem for the context-free grammars is decidable in NLOGSPACE, but becomes NP-complete if the grammar is compressed as well. The equivalence problem for these grammars is shown to be co-r. e.-complete, both finiteness and co-finiteness are r. e.-complete, while equivalence to a fixed unary language with a regular positional notation is decidable.

Язык оригиналаанглийский
Страницы (с-по)319-342
Число страниц24
ЖурналTheory of Computing Systems
Номер выпуска2
СостояниеОпубликовано - 1 авг 2011

Предметные области Scopus

  • Теоретические компьютерные науки
  • Математика и теория расчета

Fingerprint Подробные сведения о темах исследования «One-Nonterminal Conjunctive Grammars over a Unary Alphabet». Вместе они формируют уникальный семантический отпечаток (fingerprint).