One-dimensional equations of deformation of thin slightly curved rods. Asymptotical analysis and justification

S. A. Nazarov, A. S. Slutskii

Результат исследований: Научные публикации в периодических изданияхстатья

7 Цитирования (Scopus)

Аннотация

We obtain asymptotics for the solution of the spatial problem of elasticity theory in a thin body (a rod) with a smoothly varying cross-section. Any anisotropy and any non-homogeneity of material is admitted. The ends of the a rod, which is under the action of volume forces, are rigidly fixed (clamped), and the lateral surface is under the action of forces. The small parameter h is the ratio of the maximal diameter of the rod to its length. We suggest conditions on the differential properties and the structure of external load under which the solution of the one-dimensional equations yielded by asymptotical analysis provides an acceptable approximation to the three-dimensional displacement and stress fields. The error estimate is based on a special version of Korn's inequality, which is asymptotically sharp if suitable weight factors and powers of h are introduced into the La-norms of displacements and their derivatives.

Язык оригиналаанглийский
Страницы (с-по)531-562
Число страниц32
ЖурналIzvestiya Mathematics
Том64
Номер выпуска3
DOI
СостояниеОпубликовано - 1 дек 2000

    Fingerprint

Предметные области Scopus

  • Математика (все)

Цитировать