On the degeneration of creeping waves in a vicinity of critical values of the impedance

I. V. Andronov, D. Bouche

Результат исследований: Научные публикации в периодических изданияхстатьярецензирование

9 Цитирования (Scopus)


Creeping waves propagating on a three-dimensional surface with an impedance boundary condition are considered. The standard asymptotic formula for the creeping waves contains the factor l/(ξ + q2) where ξ is the attenuation parameter and q is the Fock parameter q = (kρ/2)1/3Z, where k is the wave number, ρ is the radius of curvature of the geodesics followed by creeping wave and Z is the impedance. This factor diverges when the parameter q takes critical values, which means invalidity of the usual asymptotic formula for creeping wave field. The critical values of the Fock parameter q are found and a new local asymptotics is derived in the supposition that the factor l/(ξ + q2) is infinite on a curve (which we call the degeneration curve) crossed by creeping waves. This new asymptotic decomposition is carried out by powers of the small parameter k-1/9. The effect of creeping wave passing through the degeneration curve is examined.

Язык оригиналаанглийский
Страницы (с-по)400-411
Число страниц12
ЖурналWave Motion
Номер выпуска4
СостояниеОпубликовано - 1 мар 2008

Предметные области Scopus

  • Статистическая и нелинейная физика

Fingerprint Подробные сведения о темах исследования «On the degeneration of creeping waves in a vicinity of critical values of the impedance». Вместе они формируют уникальный семантический отпечаток (fingerprint).