Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
It is well known that for a standard Brownian motion (BM) {B(t), t ≥ 0} with values in Rd, its convex hull V (t) = conv{ B(s), s ≤ t} with probability 1 for each t > 0 contains 0 as an interior point. We also know that the winding number of a typical path of a two-dimensional BM is equal to +∞. The aim of this paper is to show that these properties are not specifically “Brownian,” but hold for a much larger class of d-dimensional self-similar processes. This class contains, in particular, d-dimensional fractional Brownian motions and (concerning convex hulls) strictly stable Lévy processes. Bibliography: 10 titles.
| Язык оригинала | английский |
|---|---|
| Страницы (с-по) | 707-713 |
| Число страниц | 7 |
| Журнал | Journal of Mathematical Sciences (United States) |
| Том | 219 |
| Номер выпуска | 5 |
| Дата раннего онлайн-доступа | 29 окт 2016 |
| DOI | |
| Состояние | Опубликовано - 2016 |
| Опубликовано для внешнего пользования | Да |
ID: 49897164