DOI

It is well known that for a standard Brownian motion (BM) {B(t), t ≥ 0} with values in Rd, its convex hull V (t) = conv{ B(s), s ≤ t} with probability 1 for each t > 0 contains 0 as an interior point. We also know that the winding number of a typical path of a two-dimensional BM is equal to +∞. The aim of this paper is to show that these properties are not specifically “Brownian,” but hold for a much larger class of d-dimensional self-similar processes. This class contains, in particular, d-dimensional fractional Brownian motions and (concerning convex hulls) strictly stable Lévy processes. Bibliography: 10 titles.

Язык оригиналаанглийский
Страницы (с-по)707-713
Число страниц7
ЖурналJournal of Mathematical Sciences (United States)
Том219
Номер выпуска5
Дата раннего онлайн-доступа29 окт 2016
DOI
СостояниеОпубликовано - 2016
Опубликовано для внешнего пользованияДа

    Предметные области Scopus

  • Теория вероятности и статистика
  • Математика (все)
  • Прикладная математика

ID: 49897164