On an algebraic solution of the Rawls location problem in the plane with rectilinear metric

N.K. Krivulin, P.V. Plotnikov

Результат исследований: Научные публикации в периодических изданияхстатьярецензирование

7 Цитирования (Scopus)

Аннотация

A minimax single-facility location problem with rectilinear metric is examined by using methods of tropical (idempotent) mathematics. This problem, known as the Rawls problem or the messenger problem, appears in the location of emergency services (hospitals, fire stations) in cities with straight rectangular streets. In terms of idempotent algebra, the problem is reduced to minimizing a functional given on the set of three-dimensional vectors by an appropriately constructed matrix and calculated by using the multiplicative conjugate transposition. The minimum of the objective function is found subject to constraints in the form of a relation that holds between components of the vectors. A new result of the spectral theory of matrices in idempotent algebra is applied, which offers a general solution to the problem of minimizing such functionals without additional constraints. Based on the result, a general solution to the problem with constraints on the feasible solution is given in terms of the tropical algeb
Язык оригиналаанглийский
Страницы (с-по)75-81
ЖурналVestnik St. Petersburg University: Mathematics
Том48
Номер выпуска2
DOI
СостояниеОпубликовано - 2015

Fingerprint

Подробные сведения о темах исследования «On an algebraic solution of the Rawls location problem in the plane with rectilinear metric». Вместе они формируют уникальный семантический отпечаток (fingerprint).

Цитировать