Numerical visualization of attractors: Self-exciting and hidden attractors

Nikolay Kuznetsov, Gennady Leonov

Результат исследований: Публикации в книгах, отчётах, сборниках, трудах конференцийглава/разделнаучнаярецензирование

3 Цитирования (Scopus)

Аннотация

An oscillation in a dynamical system can be easily localized numerically if initial conditions from its open neighborhood in the phase space (with the exception of a minor set of points of measure zero) lead to longtime behavior that approaches the oscillation. From a computational point of view, such an oscillation (or a set of oscillations) is called an attractor and its attracting set is called a basin of attraction (i.e., a set of initial data for which the trajectories numerically tend to the attractor).

Язык оригиналаанглийский
Название основной публикацииHandbook of Applications of Chaos Theory
ИздательTaylor & Francis
Страницы135-143
Число страниц9
ISBN (электронное издание)9781466590441
ISBN (печатное издание)9781466590434
DOI
СостояниеОпубликовано - 1 янв 2017

    Fingerprint

Предметные области Scopus

  • Математика (все)

Цитировать

Kuznetsov, N., & Leonov, G. (2017). Numerical visualization of attractors: Self-exciting and hidden attractors. В Handbook of Applications of Chaos Theory (стр. 135-143). Taylor & Francis. https://doi.org/10.1201/b20232