Numerical Study of Convergence of Nonlinear Models of the Theory of Shells with Thickness Decrease

Результат исследований: Публикации в книгах, отчётах, сборниках, трудах конференцийстатья в сборнике материалов конференциинаучнаярецензирование

22 Цитирования (Scopus)

Аннотация

The article is devoted to numerical study of convergence of calculation results obtained on the basis of two nonlinear models of the theory of shells with thickness decrease. As models are considered nonlinear theory of thin shells, based on the hypotheses of the Kirchhoff-Chernykh and hypotheses type Tymoshenko, modified K.F. Chernykh for the case of hyperelastic rubber-like material. As an example, we consider the problem of axisymmetric conical compression and spherical shell by axial force. The convergence of results with decreasing thickness is disturbed in areas stability loss(buckling). Also happens when in the deformation process is violated the basic assumption of the theory of shells - the thickness is much smaller than radius of curvature (h <<R).
Язык оригиналаанглийский
Название основной публикацииNumerical Study of Convergence of Nonlinear Models of the Theory of Shells with Thickness Decrease
ИздательAmerican Institute of Physics
ISBN (печатное издание)9780735412873
DOI
СостояниеОпубликовано - 2015

Fingerprint Подробные сведения о темах исследования «Numerical Study of Convergence of Nonlinear Models of the Theory of Shells with Thickness Decrease». Вместе они формируют уникальный семантический отпечаток (fingerprint).

Цитировать