Nonstability of the inversion of the radon transform

Результат исследований: Научные публикации в периодических изданияхстатья

1 цитирование (Scopus)

Выдержка

Several examples of the distributions on the plane for which the distance in variation between their projections on an arbitrary one-dimensional direction is less than or equal to σ, but the uniform distance between their two-dimensional distribution functions is equal to 1/2, are constructed.

Язык оригиналаанглийский
Страницы (с-по)53-58
Число страниц6
ЖурналJournal of Mathematical Sciences
Том88
Номер выпуска1
DOI
СостояниеОпубликовано - 1 янв 1998

Отпечаток

Radon Transform
Radon
Distribution functions
Inversion
Less than or equal to
Distribution Function
Projection
Arbitrary

Предметные области Scopus

  • Теория вероятности и статистика
  • Математика (все)
  • Прикладная математика

Цитировать

@article{65f07c6a0a4b4c3eb3dde6e991e73bbf,
title = "Nonstability of the inversion of the radon transform",
abstract = "Several examples of the distributions on the plane for which the distance in variation between their projections on an arbitrary one-dimensional direction is less than or equal to σ, but the uniform distance between their two-dimensional distribution functions is equal to 1/2, are constructed.",
author = "Zaitsev, {A. Yu}",
year = "1998",
month = "1",
day = "1",
doi = "10.1007/BF02363262",
language = "English",
volume = "88",
pages = "53--58",
journal = "Journal of Mathematical Sciences",
issn = "1072-3374",
publisher = "Springer",
number = "1",

}

Nonstability of the inversion of the radon transform. / Zaitsev, A. Yu.

В: Journal of Mathematical Sciences , Том 88, № 1, 01.01.1998, стр. 53-58.

Результат исследований: Научные публикации в периодических изданияхстатья

TY - JOUR

T1 - Nonstability of the inversion of the radon transform

AU - Zaitsev, A. Yu

PY - 1998/1/1

Y1 - 1998/1/1

N2 - Several examples of the distributions on the plane for which the distance in variation between their projections on an arbitrary one-dimensional direction is less than or equal to σ, but the uniform distance between their two-dimensional distribution functions is equal to 1/2, are constructed.

AB - Several examples of the distributions on the plane for which the distance in variation between their projections on an arbitrary one-dimensional direction is less than or equal to σ, but the uniform distance between their two-dimensional distribution functions is equal to 1/2, are constructed.

UR - http://www.scopus.com/inward/record.url?scp=54749131619&partnerID=8YFLogxK

U2 - 10.1007/BF02363262

DO - 10.1007/BF02363262

M3 - Article

AN - SCOPUS:54749131619

VL - 88

SP - 53

EP - 58

JO - Journal of Mathematical Sciences

JF - Journal of Mathematical Sciences

SN - 1072-3374

IS - 1

ER -