Modified Gauss-Newton method in low-rank signal estimation

Результат исследований: Рабочие материалырабочие материалы

Аннотация

The paper is devoted to the solution of a weighted non-linear least-squares problem for low-rank signal estimation, which is related Hankel structured low-rank approximation problems. The solution is constructed by a modified weighted Gauss-Newton method. The advantage of the suggested method is the possibility of its stable and fast implementation. The method is compared with a known method, which uses the variable-projection approach, by stability, accuracy and computational cost. For the weighting matrix, which corresponds to autoregressive processes of order $p$, the computational cost is $O(N r^2 + N p^2 + r N \log N)$, where $N$ is the time series length, $r$ is the rank of approximating time series. For the proof of the suggested method, useful properties of the space of series of rank $r$ are studied.
Язык оригиналаанглийский
СостояниеОпубликовано - 4 мар 2018

Ключевые слова

  • math.NA
  • 15B99, 15B05, 37M10, 41A29, 49M15, 65F30, 65K05, 65Y20, 68W25, 93E24

Fingerprint Подробные сведения о темах исследования «Modified Gauss-Newton method in low-rank signal estimation». Вместе они формируют уникальный семантический отпечаток (fingerprint).

Цитировать