Mathematical model of two-layer in pipe

Sergey K. Matveev, Nurbulat Zh Jaichibekov, Bakyt S. Shalabayeva

Результат исследований: Публикации в книгах, отчётах, сборниках, трудах конференцийстатья в сборнике материалов конференциинаучнаярецензирование

Аннотация

The problem of stationary turbulent flow in an inclined pipe of two immiscible liquids is solving. The formulation and method of solving the problem are close to our previous works, but the flow is turbulent. At the phase surface (y = h, h is the depth of the lower layer of the liquid) axial velocity w, frictional stress and turbulent viscosity νt are assumed to be continuous, the densities ρi and molecular viscosities νi are different for i = 1 (y ≤ h) and for i = 2 (y ≥ h). The equations of momentum in each layer and the equation for turbulent viscosity are numerically solved. At moderate Reynolds numbers, the regimes were observed in the calculations when in a layer with a small volume fraction the flow became laminar with turbulent flow in the second layer.

Язык оригиналаанглийский
Название основной публикацииInternational Conference "Functional Analysis In Interdisciplinary Applications", FAIA 2017
РедакторыTynysbek Kal'menov, Makhmud Sadybekov
ИздательAmerican Institute of Physics
Том1880
ISBN (электронное издание)9780735415607
DOI
СостояниеОпубликовано - 11 сен 2017
СобытиеInternational Conference on Functional Analysis In Interdisciplinary Applications, FAIA 2017 - Astana, Казахстан
Продолжительность: 2 окт 20175 окт 2017

Конференция

КонференцияInternational Conference on Functional Analysis In Interdisciplinary Applications, FAIA 2017
СтранаКазахстан
ГородAstana
Период2/10/175/10/17

Предметные области Scopus

  • Физика и астрономия (все)

Fingerprint Подробные сведения о темах исследования «Mathematical model of two-layer in pipe». Вместе они формируют уникальный семантический отпечаток (fingerprint).

  • Цитировать

    Matveev, S. K., Jaichibekov, N. Z., & Shalabayeva, B. S. (2017). Mathematical model of two-layer in pipe. В T. Kal'menov, & M. Sadybekov (Ред.), International Conference "Functional Analysis In Interdisciplinary Applications", FAIA 2017 (Том 1880). [060015] American Institute of Physics. https://doi.org/10.1063/1.5000669