Mammalian amyloidogenic proteins promote prion nucleation in yeast

Pavithra Chandramowlishwaran, Meng Sun, Kristin L Casey, Andrey V Romanyuk, Anastasiya V Grizel, Julia V Sopova, Aleksandr A Rubel, Carmen Nussbaum-Krammer, Ina M Vorberg, Yury O Chernoff

Результат исследований: Научные публикации в периодических изданияхстатьянаучнаярецензирование

2 Цитирования (Scopus)

Выдержка

Fibrous cross-β aggregates (amyloids) and their transmissible forms (prions) cause diseases in mammals (including humans) and control heritable traits in yeast. Initial nucleation of a yeast prion by transiently overproduced prion-forming protein or its (typically, QN-rich) prion domain is efficient only in the presence of another aggregated (in most cases, QN-rich) protein. Here, we demonstrate that a fusion of the prion domain of yeast protein Sup35 to some non-QN-rich mammalian proteins, associated with amyloid diseases, promotes nucleation of Sup35 prions in the absence of preexisting aggregates. In contrast, both a fusion of the Sup35 prion domain to a multimeric non-amyloidogenic protein, and an expression of a mammalian amyloidogenic protein that is not fused to the Sup35 prion domain failed to promote prion nucleation, further indicating that physical linkage of a mammalian amyloidogenic protein to the prion domain of a yeast protein is required for the nucleation of a yeast prion. Biochemical and cytological approaches confirmed the nucleation of protein aggregates in the yeast cell. Sequence alterations antagonizing or enhancing amyloidogenicity of human β amyloid (Aβ, associated with Alzheimer disease) and mouse PrP (associated with prion diseases) respectively antagonized or enhanced nucleation of a yeast prion by these proteins. The yeast-based prion nucleation assay, developed in our work, can be employed for mutational dissection of amyloidogenic proteins. We anticipate that it will aid in the identification of chemicals that influence initial amyloid nucleation and in searching for new amyloidogenic proteins in a variety of proteomes.

Язык оригиналаанглийский
ЖурналJournal of Biological Chemistry
DOI
СостояниеЭлектронная публикация перед печатью - 12 янв 2018

Ключевые слова

    Предметные области Scopus

    • Биохимия, генетика и молекулярная биология (все)

    Цитировать

    Chandramowlishwaran, Pavithra ; Sun, Meng ; Casey, Kristin L ; Romanyuk, Andrey V ; Grizel, Anastasiya V ; Sopova, Julia V ; Rubel, Aleksandr A ; Nussbaum-Krammer, Carmen ; Vorberg, Ina M ; Chernoff, Yury O. / Mammalian amyloidogenic proteins promote prion nucleation in yeast. В: Journal of Biological Chemistry. 2018.
    @article{1c8e10be6dff43ffa48c6994f5b4df54,
    title = "Mammalian amyloidogenic proteins promote prion nucleation in yeast",
    abstract = "Fibrous cross-β aggregates (amyloids) and their transmissible forms (prions) cause diseases in mammals (including humans) and control heritable traits in yeast. Initial nucleation of a yeast prion by transiently overproduced prion-forming protein or its (typically, QN-rich) prion domain is efficient only in the presence of another aggregated (in most cases, QN-rich) protein. Here, we demonstrate that a fusion of the prion domain of yeast protein Sup35 to some non-QN-rich mammalian proteins, associated with amyloid diseases, promotes nucleation of Sup35 prions in the absence of preexisting aggregates. In contrast, both a fusion of the Sup35 prion domain to a multimeric non-amyloidogenic protein, and an expression of a mammalian amyloidogenic protein that is not fused to the Sup35 prion domain failed to promote prion nucleation, further indicating that physical linkage of a mammalian amyloidogenic protein to the prion domain of a yeast protein is required for the nucleation of a yeast prion. Biochemical and cytological approaches confirmed the nucleation of protein aggregates in the yeast cell. Sequence alterations antagonizing or enhancing amyloidogenicity of human β amyloid (Aβ, associated with Alzheimer disease) and mouse PrP (associated with prion diseases) respectively antagonized or enhanced nucleation of a yeast prion by these proteins. The yeast-based prion nucleation assay, developed in our work, can be employed for mutational dissection of amyloidogenic proteins. We anticipate that it will aid in the identification of chemicals that influence initial amyloid nucleation and in searching for new amyloidogenic proteins in a variety of proteomes.",
    keywords = "Journal Article",
    author = "Pavithra Chandramowlishwaran and Meng Sun and Casey, {Kristin L} and Romanyuk, {Andrey V} and Grizel, {Anastasiya V} and Sopova, {Julia V} and Rubel, {Aleksandr A} and Carmen Nussbaum-Krammer and Vorberg, {Ina M} and Chernoff, {Yury O}",
    note = "1. Knowles TPJ, Vendruscolo M, Dobson CM. The amyloid state and its association with protein misfolding diseases. Nature Reviews Molecular Cell Biology. 2014;15:384–96. doi:10.1038/nrm3810 2. Kahn SE, Andrikopoulos S, Verchere CB. Islet amyloid: a long-recognized but underappreciated pathological feature of type 2 Diabetes. Diabetes. 1999;48:241–53. doi:10.2337/diabetes.48.2.241 3. Westermark P. Amyloid and polypeptide hormones: what is their interrelationship? Amyloid. 1994;1:47–58. doi:10.3109/13506129409148624 4. Cobb NJ, Surewicz WK. Prion diseases and their biochemical mechanisms. Biochemistry. 2009;48: 2574-85. doi:10.1021/bi900108v 5. Prusiner SB. Prion diseases and the BSE crisis. Science. 1997;278:245–51. doi: 10.1126/science.278.5336.245 6. Alzheimer’s Association. 2017 Alzheimer’s disease facts and figures. Alzheimers Dement 2017;13:325–73. 7. James BD, Leurgans S, Hebert LE, Scherr PA, Yaffe K, Bennett BD. Contribution of Alzheimer disease to mortality in the United States. Neurology. 2014;82:1045–1050. doi:10.1212/01.wn1.0000455099.43083.c6 8. Jones RW, Romeo R, Trigg R, Knapp M, Sato A, King D, Niecko T, Lacey L; DADE Investigator Group. Dependence in Alzheimer’s disease and service use costs, quality of life, and caregiver burden: The DADE study. Alzheimer's & Dementia. 2015. 11(3):280-90. doi: 10.1016/j.jalz.2014.03.001 9. Fowler DM, Koulov AV, Balch WE, Kelly JW. Functional amyloid - from bacteria to humans. Trends in Biochemical Sciences. 2007;32:217-24. doi: 10.1016/j.tibs.2007.03.003 10. Nizhnikov AA, Antonets KS, Bondarev SA, Inge-Vechtomov SG, Derkatch IL. Prions, amyloids, and RNA: Pieces of a puzzle. Prion. 2016;10:182-206. doi:10.1080/19336896.2016.1181253 11. Grabowski TJ, Cho HS, Vonsattel JPG, Rebeck GW, Greenberg SM. Novel amyloid precursor protein mutation in an Iowa family with dementia and severe cerebral amyloid angiopathy. Annals of Neurology. 2001;49:697-705. doi:10.1002/ana.1009 12. Prusiner SB. Genetic and infectious prion diseases. Archives of Neurology. 1993;50:1129-53. doi:10.1001/archneur.1993.00540110011002 13. Van Nostrand WE, Melchor JP, Cho HS, Greenberg SM, Rebeck GW. Pathogenic effects of D23N Iowa mutant amyloid beta protein. The Journal of Biological Chemistry. 2001;276:32860–6. doi: 10.1074/jbc.M104135200 14. Irvine GB, El-Agnaf OM, Shankar GM, Walsh DM. Protein aggregation in the brain: the molecular basis for Alzheimer's and Parkinson's diseases. Molecular Medicine. 2008;14:451-64. doi:10.2119/2007-00100.Irvine 15. Liebman SW, Chernoff YO. Prions in yeast. Genetics. 2012;191:1041–72. doi:10.1534/genetics.111.137760 16. Wickner RB, Edskes HK, Bateman DA, Kelly AC, Gorkovskiy A, Dayani Y, et al. Amyloids and yeast prion biology. Biochemistry. 2013;52:1514-27. doi: 10.1021/bi301686a 17. Stansfield I, Jones KM, Kushnirov VV, Dagkesamanskaya AR, Poznyakovski AI, Paushkin SV, et al. The products of the SUP45 (eRF1) and SUP35 genes interact to mediate translation termination in Saccharomyces cerevisiae. The EMBO Journal. 1995;14:4365-73. PMCID: PMC394521 18. Zhouravleva G, Frolova L, Le Goff X, Le Guellec R, Inge-Vechtomov S, Kisselev L, et al. Termination of translation in eukaryotes is governed by two interacting polypeptide chain release by guest on January 23, 2018 http://www.jbc.org/ Downloaded from Nucleation of a yeast prion by mammalian proteins factors, eRF1 and eRF3. The EMBO Journal. 1995;14:4065-72. PMCID: PMC394485 19. Chernoff YO, Derkatch IL, Inge-Vechtomov SG. Multicopy SUP35 gene induces de novo appearance of psi-like factors in the yeast Saccharomyces cerevisiae. Current Genetics. 1993;24:268-70. doi:10.1007/BF00351802 20. Derkatch IL, Chernoff YO, Kushnirov VV, Inge-Vechtomov SG, Liebman SW. Genesis and variability of [PSI] prion factors in Saccharomyces cerevisiae. Genetics. 1996;144:1375-86. PMCID: PMC1207691 21. Masison DC, Wickner RB. Prion-inducing domain of yeast Ure2p and protease resistance of Ure2p in prion-containing cells. Science. 1995;270:93-5. doi:10.1126/science.270.5233.93 22. Wickner RB. [URE3] as an altered URE2 protein: evidence for a prion analog in Saccharomyces cerevisiae. Science. 1994;264: 566–9. doi: 0.1126/science.7909170 23. Derkatch IL, Bradley ME, Zhou P, Chernoff YO, Liebman SW. Genetic and environmental factors affecting the de novo appearance of the [PSI+] prion in Saccharomyces cerevisiae. Genetics. 1997;147:507–19. PMCID: PMC1208174 24. Derkatch IL, Bradley ME, Hong JY, Liebman SW. Prions affect the appearance of other prions: the story of [PIN+]. Cell. 2001;106:171–82. doi:10.1016/S0092-8674(01)00427-5. 25. Osherovich LZ, Weissman JS. Multiple Gln/Asn-rich prion domains confer susceptibility to induction of the yeast [PSI+] prion. Cell. 2001;106:183–94. doi:10.1016/S0092-8674(01)00440-8 26. Goehler H, Droge A, Lurz R, Schnoegl S, Chernoff YO, Wanker EE. Pathogenic polyglutamine tracts are potent inducers of spontaneous Sup35 and Rnq1 amyloidogenesis. PLoS One. 2010;5:e9642. doi:10.1371/journal.pone.0009642 27. Suzuki G, Suzuki G, Shimazu N, Tanaka M. A yeast prion, Mod5, promotes acquired drug resistance and cell survival under environmental stress. Science. 2012. 336(6079):355-9. doi:10.1126/science.1219491 28. Z. Du, K.W. Park, H. Yu, Q. Fan, L. Li. Newly identified prion linked to the chromatin-remodeling factor Swi1 in Saccharomyces cerevisiae. Nat. Genet. 2008; 460-465. doi: 10.1038/ng.112 29. Fischer M, R{\"u}licke T, Raeber A, Sailer A, Moser M, Oesch B, et al. Prion protein (PrP) with aminoproximal deletions restoring susceptibility of PrP knockout mice to scrapie. The EMBO Journal. 1996. 15:1255–64. doi:10.5167/uzh-1867 30. N{\"a}slund J, Schierhorn A, Hellman U, Lannfelt L, Roses AD, Tjernberg LO, et al. Relative abundance of Alzheimer Aβ amyloid peptide variants in Alzheimer disease and normal aging. Proceedings of the National Academy of Sciences of USA. 1994;91:8378-82. PMCID: PMC44609 31. Rubel AA, Ryzhova TA, Antonets KS, Chernoff YO, Galkin AP. Identification of PrP sequences essential for the interaction between the PrP polymers and Aβ peptide in a yeast-based assay. Prion. 2013;7:469–76. doi: 10.4161/pri.26867 32. Halfmann R, Lindquist SL. Screening for amyloid aggregation by semi-denaturing detergent-agarose gel electrophoresis. Journal of Visualized Experiments. 2008;17:e838. doi:10.3791/838 33. Chernova TA, Romanyuk AV, Karpova TS, Shanks JR, Ali M, Howie RL, et al. Prion induction by the short-lived, stress-induced protein Lsb2 is regulated by ubiquitination and association with the actin cytoskeleton. Molecular Cell. 2011;43:242–52. doi:10.1016/j.molcel.2011.07.001 34. Chernova TA, Kiktev DA, Romanyuk AV, Shanks JR, Laur O, Ali M, et al. Yeast short-lived actinassociated protein forms a metastable prion in response to thermal stress. Cell Reports. 2017;18:751-61. doi:10.1016/j.celrep.2016.12.082 35. Stefanis L. Alpha-synuclein in Parkinson's disease. Cold Spring Harbor Perspectives in Medicine. 2012;4:a009399. doi: 10.1101/cshperspect.a009399 36. Li SX, Tong YP, Xie XC, Wang QH, Zhou HN, Han Y, et al. Octameric structure of the human bifunctional enzyme PAICS in purine biosynthesis. Journal of Molecular Biology. 2007;366:1603-14. doi:10.1016/j.jmb.2006.12.027 37. Zhou P, Derkatch IL, Liebman SW. The relationship between visible intracellular aggregates that appear after overexpression of Sup35 and the yeast prion-like elements [PSI+] and [PIN+]. Molecular Microbiology. 2001;39: 37-46. doi: 10.1046/j.1365-2958.2001.02224.x by guest on January 23, 2018 http://www.jbc.org/ Downloaded from Nucleation of a yeast prion by mammalian proteins 38. Ganusova EE, Ozolins LN, Bhagat S, Newnam GP, Wegrzyn RD, Sherman NY et al. Modulation of prion formation, aggregation, and toxicity by the actin cytoskeleton in yeast. Mol Cell Biol. 2006;26:617-29. doi:10.1128/MCB.26.2.617-629.2006 39. Chernoff YO, Lindquist SL, Ono B, Inge-Vechtomov SG, Liebman SW. Role of the chaperone protein Hsp104 in propagation of the yeast prion-like factor [psi+]. Science. 1995;268: 880–4. doi:10.1016/0168-9525(95)90533-2 40. Chernova TA, Wilkinson KD, Chernoff, YO. Prions, chaperones and proteostasis in yeast. Cold Spring Harbor Perspectives in Biology. 2017;9: pii:a023663. doi:10.1101/CSHPERSPECT.a023663 41. Mori H, Takio K, Ogawara M, Selkoe DJ. Mass spectrometry of purified amyloid beta protein in Alzheimer's disease. The Journal of Biological Chemistry. 1992;267:17082–86. PMID: 1512246 42. Jarrett JT, Berger EP, Lansbury PT. The carboxy terminus of the β-amyloid protein is critical for the seeding of amyloid formation - implications for the pathogenesis of Alzheimer's disease. Biochemistry. 1993;32:4693–7. doi:10.1021/bi00069a001 43. Colvin MT, Silvers R, Ni QZ, Can TV, Sergeyev I, Rosay M, et al. Atomic resolution structure of monomorphic Aβ42 amyloid fibrils. Journal of the American Chemical Society. 2016;138:9663-74. doi:10.1021/jacs.6b05129 44. Walti MA, Ravotti F, Arai H, Glabe CG, Wall JS, B{\"o}ckmann A, et al.. Atomic-resolution structure of a disease-relevant Aβ (1-42) amyloid fibril. Proceedings of the National Academy of Sciences of USA. 2016;113:4976–84. doi: 10.1073/pnas.1600749113 45. Hilbich C, Kisters-Woike B, Reed J, Masters CL, Beyreuther K. Substitutions of hydrophobic amino acids reduce the amyloidogenicity of Alzheimer's disease beta A4 peptides. Journal of Molecular Biology. 1992;228:460–73. doi:10.1016/0022-2836(92)90835-8 46. Morimoto A, Irie K, Murakami K, Masuda Y, Ohigashi H, Nagao M, et al. Analysis of the secondary structure of beta-amyloid (Abeta42) fibrils by systematic proline replacement. The Journal of Biological Chemistry. 2004;279:52781–8. doi:10.1074/jbc.M406262200 47. Williams AD, Portelius E, Kheterpal I, Guo JT, Cook KD, Xu Y, et al. Mapping abeta amyloid fibril secondary structure using scanning proline mutagenesis. Journal of Molecular Biology. 2004;335:833–42. doi: 10.1016/j.jmb.2003.11.008 48. Paravastu AK, Leapman RD, Yau WM, Tycko R. Molecular structural basis for polymorphism in Alzheimer's β-amyloid fibrils. Proceedings of the National Academy of Sciences of USA. 2008;105:18349–54. doi:10.1073/pnas.0806270105 49. Tycko R. Molecular structure of amyloid fibrils: insights from solid-state NMR. Quarterly Review of Biophysics. 2006;39:1-55. doi: 10.1017/S0033583506004173 50. Xiao Y, Ma B, McElheny D, Parthasarathy S, Long F, Hoshi M, et al. Aβ(1-42) fibril structure illuminates self-recognition and replication of amyloid in Alzheimer's disease. Nature Structural and Molecular Biology. 2015;22:499-505. doi: 10.1038/nsmb.2991 51. Perrier V, Kaneko K, Safar J, Vergara J, Tremblay P, DeArmond SJ, et al. Dominant-negative inhibition of prion replication in transgenic mice. Proceedings of the National Academy of Sciences of USA. 2002;99:13079-84. doi:10.1073/pnas.182425299 52. Flechsig E, Weissmann C. The role of PrP in health and disease. Current Molecular Medicine. 2004;4:337-53. doi:10.2174/1566524043360645 53. Ghetti B, Piccardo P, Frangione B, Bugiani O, Giaccone G, Young K, et al. Prion protein amyloidosis. Brain Pathology. 1996;6:127–45. doi:10.1111/j.1750-3639.1996.tb00796.x 54. Kitamoto T, Iizuka R, Tateishi J. An amber mutation of prion protein in Gerstmann- Str{\"a}ussler syndrome with mutant PrP plaques. Biochemical and Biophysical Research Communications. 1993;192:532–7. doi:10.1006/bbrc.1993.1447 55. Lorenz H, Windl O, Kretzschmar HA. Cellular phenotyping of secretory and nuclear prion proteins associated with inherited prion diseases. The Journal of Biological Chemistry. 2002;277:8508–8516. doi:10.1074/jbc.M110197200 56. Theint T, Nadaud PS, Surewicz K, Surewicz WK, Jaroniec CP. 13C and 15N chemical shift assignments of mammalian Y145Stop prion protein amyloid fibrils. Biomol. NMR Assign. 2017;11:75-80. doi: by guest on January 23, 2018 http://www.jbc.org/ Downloaded from Nucleation of a yeast prion by mammalian proteins 10.1007/s12104-016-9723-6 57. Chiesa R, Piccardo P, Ghetti N, Harris DA. Neurological illness in transgenic mice expressing a prion protein with an insertional mutation. Neuron. 1998;21:1339–51. doi:10.1016/S0896-6273(00)80653-4 58. Prusiner SB, Scott MR. Genetics of prions. Annual Review of Genetics. 1997;31:139–75. doi: 10.1146/annurev.genet.31.1.139 59. Kochneva-Pervukhova NV, Poznyakovski AI, Smirnov VN, Ter-Avanesyan MD. C-terminal truncation of the Sup35 protein increases the frequency of de novo generation of a prion-based [PSI+] determinant in Saccharomyces cerevisiae. Current Genetics. 1998;34:146-51. PMID: 9724418 60. Tanaka M, Collins SR, Toyama BH, Weissman JS. The physical basis of how prion conformations determine strain phenotypes. Nature. 2006;442:585–9. doi: 10.1038/nature04922 61. Newby GA, Kiriakov S, HallacliE, KayatekinC, Tsvetkov P, Mancuso CP, Bonner JM, Hesse WR, Chakrabortee S, Manogaran AL, Liebman SW, Lindquist S, Khalil AS. Genetic tool to track protein aggregates and control protein inheritance. Cell. In press. doi: 10.1016/j.cell.2017.09.041 62. Derkatch IL, Uptain SM, Outeiro TF, Krishnan R, Lindquist SL, Liebman SW. Effects of Q/N-rich, polyQ, and non-polyQ amyloids on the de novo formation of the [PSI+] prion in yeast and aggregation of Sup35 in vitro. Proceedings of the National Academy of Sciences of USA. 2004;101:12934-9. doi:10.1073/pnas.0404968101 63. Choe YJ, Ryu Y, Kim HJ, Seok YJ. Increased [PSI+] appearance by fusion of Rnq1 with the prion domain of Sup35 in Saccharomyces cerevisiae. Eukaryotic Cell. 2009;8:968–76. doi:10.1128/EC.00353-08 64. Jansen C, Parchi P, Capellari S, Vermeij AJ, Corrado P, Baas F, Strammiello R, et al. Prion protein amyloidosis with divergent phenotype associated with two novel nonsense mutations in PRNP. Acta Neuropathologica 2010;119:189-97. doi:10.1007/s00401-009-0609-x 65. Kovač V, Hafner-Bratkovič I, Čurin Šerbec V. Anchorless forms of prion protein - Impact of truncation on structure destabilization and prion protein conversion. Biochemical and Biophysical Research Communications. 2016;481:1-6. doi:10.1016/j.bbrc.2016.11.036 66. Diaz-Espinoza R, Soto C. High-resolution structure of infectious prion protein: the final frontier. Nature Structural & Molecular Biology. 2012;19:370–7. doi:10.1038/nsmb.2266 67. Groveman BR, Kraus A, Raymond LD, Dolan MA, Anson KJ, Dorward DW, et al. Charge neutralization of the central lysine cluster in prion protein (PrP) promotes PrP(Sc)-like folding of recombinant PrP amyloids. The Journal of Biological Chemistry. 2015;290:1119-28. doi:10.1074/jbc.M114.619627 68. Requena JR, Wille H. The structure of the infectious prion protein: experimental data and molecular models. Prion. 2014;8:60–6. doi:10.4161/pri.28368 69. Benetti F, Legname G. New insights into structural determinants of prion protein folding and stability. Prion. 2015;9:119-24. doi:10.1080/19336896.2015.1022023 70. Govaerts C, Wille H, Prusiner SB, Cohen FE. Evidence for assembly of prions with left-handed betahelices into trimers. Proceedings of the National Academy of Sciences of USA. 2004;101:8342-7. doi:10.1073/pnas.0402254101 71. Cobb NJ, S{\"o}nnichsen FD, McHaourab H, Surewicz WK. Molecular architecture of human prion protein amyloid: a parallel, in-register β-structure. Proceedings of the National Academy of Sciences of USA. 2007;104:18946–51. doi:10.1073/pnas.0706522104 72. Saijo E, Hughson AG, Raymond GJ, Suzuki A, Horiuchi M, Caughey B. PrPSc-specific antibody reveals C-terminal conformational differences between prion strains. Journal of Virology. 2016;90:4905-13. doi: 10.1128/JVI.00088-16. 73. Bartz JC. Prion strain diversity. Cold Spring Harbor Perspectives in Medicine. 2016; 6:pii:a024349. doi:0.1101/cshperspect.a024349 74. Ghaemmaghami S. Biology and genetics of PrP prion strains. Cold Spring Harbor Perspectives in Medicine. 2016;6:pii:a026922. doi:10.1101/cshperspect.a026922 75. Cohen M, Appleby B, Safar JG. Distinct prion-like strains of amyloid beta implicated in phenotypic by guest on January 23, 2018 http://www.jbc.org/ diversity of Alzheimer's disease. Prion. 2016;10:9-17. doi:10.1080/19336896.2015.1123371 76. Makarava N, Baskakov IV. The evolution of transmissible prions: the role of deformed templating. PLOS Pathogens. 2013;9:e1003759. doi:10.1371/journal.ppat.1003759 77. Bagriantsev S, Liebman SW. Modulation of Αβ42 low-n oligomerization using a novel yeast reporter system. BMC Biology. 2006;4:32. doi:10.1186/1741-7007-4-32 78. Porzoor A, Macreadie I. Yeast as a model for studies on Aβ aggregation toxicity in Alzheimer's disease, autophagic responses, and drug screening. Methods in Molecular Biology. 2016;1303:217-26. doi: 10.1007/978-1-4939-2627-5_12 79. Treusch S, Hamamichi S, Goodman JL, Matlack KE, Chung CY, Baru V, et al. Functional links between Abeta toxicity, endocytic trafficking, and Alzheimer's disease risk factors in yeast. Science. 2011;334:1241–5. doi: 10.1126/science.1213210 80. Chernoff YO, Galkin AP, Lewitin E, Chernova TA, Newnam GP, Belenkiy SM. Evolutionary conservation of prion-forming abilities of the yeast Sup35 protein. Molecular Microbiology. 2000;35:865-76. doi:10.1046/j.1365-2958.2000.01761 81. Kushnirov VV, Ter-Avanesyan MD, Didichenko SA, Smirnov VN, Chernoff YO, Derkach IL, et al. Divergence and conservation of SUP2 (SUP35) gene of yeast Pichia pinus and Saccharomyces cerevisiae. Yeast. 1990;6:461-72. doi:10.1002/yea.320060603 82. Newnam, GP, Wegrzyn RD, Lindquist SL, Chernoff YO. Antagonistic interactions between yeast chaperones Hsp104 and Hsp70 in prion curing. Molecular and Cellular Biology. 1999;19:1325–33. doi:10.1128/MCB.19.2.1325 83. Krammer C, Suhre MH, Kremmer E, Diemer C, Hess S, Sch{\"a}tzl HM, et al. Prion protein/protein interactions: fusion with yeast Sup35p-NM modulates cytosolic PrP aggregation in mammalian cells. The FASEB Journal. 2008;22:762-73. doi:10.1096/fj.07-8733com 84. Kutzler MA, Cao C, Bai Y, Dong H, Choe PY, Saulino V, et al. Mapping of immune responses following wild-type and mutant Abeta42 plasmid or peptide vaccination in different mouse haplotypes and HLA Class II transgenic mice. Vaccine. 2006;24:4630-9. doi:10.1016/j.vaccine.2005.08.036 85. Serio TR, Lindquist SL. [PSI+]: an epigenetic modulator of translation termination efficiency. Annual Review of Cell and Developmental Biology. 1999;15:661–703. doi: 10.1146/annurev.cellbio.15.1.661 86. Chernoff YO, Newnam GP, Kumar J, Allen K, Zink AD. Evidence for a protein mutator in yeast: Role of the Hsp70-related chaperone Ssb in formation, stability, and toxicity of the [PSI] prion. Molecular and Cellular Biology. 1999;19:8103–12. doi:10.1128/MCB.19.12.8103 87. Chernova TA, Allen KD, Wesoloski LM, Shanks JR, Chernoff YO, Wilkinson KD. Pleiotropic effects of Ubp6 loss on drug sensitivities and yeast prion are due to depletion of free ubiquitin pool. The Journal of Biological Chemistry. 2003;278:52102-15. doi:10.1074/jbc.M310283200 88. Rubel AA, Saifitdinova AF, Lada AG, Nizhnikov AA, Inge-Vechtomov SG, Galkin AP. Yeast chaperone Hspl04 regulates gene expression on the posttranscriptional level. Mol. Biol. (Mosk.). 2008;42:123–30. PMID: 18389629 89. Sambrook J, Russell DW. Molecular Cloning: A Laboratory Manual. 3 rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press. 2001. ISBN-13 978-0-87969-577-4 90. Ertmer A, Gilch S, Yun SW, Flechsig E, Klebl B, Stein-Gerlach M, et al. The tyrosine kinase inhibitor STI571 induces cellular clearance of PrPSc in prion-infected cells. The Journal of Biological Chemistry. 2004;279:41918–27. doi:10.1074/jbc.M405652200 91. Parsell DA, Sanchez Y, Stitzel JD, Lindquist S. Hsp104 is a highly conserved protein with two essential nucleotide-binding sites. Nature. 1991;353: 270-3. doi:10.1038/353270a0 92. Patino MM, Liu JJ, Glover JR, Lindquist SL. Support for the prion hypothesis for inheritance of a phenotypic trait in yeast. Science. 1996;273:622-6. doi:10.1126/science.273.5275.622. 93. Kaiser C, Michaelis S, Mitchell A. Methods in Yeast Genetics: A Cold Spring Harbor Laboratory Course Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press. 1994. ISBN0879694513 94. Ghahramani, S. Fundamentals of Probability. 2nd edn. New Jersey: Pearson Prentice Hall. 2000. ISBN 0-13-145340-8",
    year = "2018",
    month = "1",
    day = "12",
    doi = "10.1074/jbc.M117.809004",
    language = "English",
    journal = "Journal of Biological Chemistry",
    issn = "0021-9258",
    publisher = "American Society for Biochemistry and Molecular Biology Inc.",

    }

    Mammalian amyloidogenic proteins promote prion nucleation in yeast. / Chandramowlishwaran, Pavithra; Sun, Meng; Casey, Kristin L; Romanyuk, Andrey V; Grizel, Anastasiya V; Sopova, Julia V; Rubel, Aleksandr A; Nussbaum-Krammer, Carmen; Vorberg, Ina M; Chernoff, Yury O.

    В: Journal of Biological Chemistry, 12.01.2018.

    Результат исследований: Научные публикации в периодических изданияхстатьянаучнаярецензирование

    TY - JOUR

    T1 - Mammalian amyloidogenic proteins promote prion nucleation in yeast

    AU - Chandramowlishwaran, Pavithra

    AU - Sun, Meng

    AU - Casey, Kristin L

    AU - Romanyuk, Andrey V

    AU - Grizel, Anastasiya V

    AU - Sopova, Julia V

    AU - Rubel, Aleksandr A

    AU - Nussbaum-Krammer, Carmen

    AU - Vorberg, Ina M

    AU - Chernoff, Yury O

    N1 - 1. Knowles TPJ, Vendruscolo M, Dobson CM. The amyloid state and its association with protein misfolding diseases. Nature Reviews Molecular Cell Biology. 2014;15:384–96. doi:10.1038/nrm3810 2. Kahn SE, Andrikopoulos S, Verchere CB. Islet amyloid: a long-recognized but underappreciated pathological feature of type 2 Diabetes. Diabetes. 1999;48:241–53. doi:10.2337/diabetes.48.2.241 3. Westermark P. Amyloid and polypeptide hormones: what is their interrelationship? Amyloid. 1994;1:47–58. doi:10.3109/13506129409148624 4. Cobb NJ, Surewicz WK. Prion diseases and their biochemical mechanisms. Biochemistry. 2009;48: 2574-85. doi:10.1021/bi900108v 5. Prusiner SB. Prion diseases and the BSE crisis. Science. 1997;278:245–51. doi: 10.1126/science.278.5336.245 6. Alzheimer’s Association. 2017 Alzheimer’s disease facts and figures. Alzheimers Dement 2017;13:325–73. 7. James BD, Leurgans S, Hebert LE, Scherr PA, Yaffe K, Bennett BD. Contribution of Alzheimer disease to mortality in the United States. Neurology. 2014;82:1045–1050. doi:10.1212/01.wn1.0000455099.43083.c6 8. Jones RW, Romeo R, Trigg R, Knapp M, Sato A, King D, Niecko T, Lacey L; DADE Investigator Group. Dependence in Alzheimer’s disease and service use costs, quality of life, and caregiver burden: The DADE study. Alzheimer's & Dementia. 2015. 11(3):280-90. doi: 10.1016/j.jalz.2014.03.001 9. Fowler DM, Koulov AV, Balch WE, Kelly JW. Functional amyloid - from bacteria to humans. Trends in Biochemical Sciences. 2007;32:217-24. doi: 10.1016/j.tibs.2007.03.003 10. Nizhnikov AA, Antonets KS, Bondarev SA, Inge-Vechtomov SG, Derkatch IL. Prions, amyloids, and RNA: Pieces of a puzzle. Prion. 2016;10:182-206. doi:10.1080/19336896.2016.1181253 11. Grabowski TJ, Cho HS, Vonsattel JPG, Rebeck GW, Greenberg SM. Novel amyloid precursor protein mutation in an Iowa family with dementia and severe cerebral amyloid angiopathy. Annals of Neurology. 2001;49:697-705. doi:10.1002/ana.1009 12. Prusiner SB. Genetic and infectious prion diseases. Archives of Neurology. 1993;50:1129-53. doi:10.1001/archneur.1993.00540110011002 13. Van Nostrand WE, Melchor JP, Cho HS, Greenberg SM, Rebeck GW. Pathogenic effects of D23N Iowa mutant amyloid beta protein. The Journal of Biological Chemistry. 2001;276:32860–6. doi: 10.1074/jbc.M104135200 14. Irvine GB, El-Agnaf OM, Shankar GM, Walsh DM. Protein aggregation in the brain: the molecular basis for Alzheimer's and Parkinson's diseases. Molecular Medicine. 2008;14:451-64. doi:10.2119/2007-00100.Irvine 15. Liebman SW, Chernoff YO. Prions in yeast. Genetics. 2012;191:1041–72. doi:10.1534/genetics.111.137760 16. Wickner RB, Edskes HK, Bateman DA, Kelly AC, Gorkovskiy A, Dayani Y, et al. Amyloids and yeast prion biology. Biochemistry. 2013;52:1514-27. doi: 10.1021/bi301686a 17. Stansfield I, Jones KM, Kushnirov VV, Dagkesamanskaya AR, Poznyakovski AI, Paushkin SV, et al. The products of the SUP45 (eRF1) and SUP35 genes interact to mediate translation termination in Saccharomyces cerevisiae. The EMBO Journal. 1995;14:4365-73. PMCID: PMC394521 18. Zhouravleva G, Frolova L, Le Goff X, Le Guellec R, Inge-Vechtomov S, Kisselev L, et al. Termination of translation in eukaryotes is governed by two interacting polypeptide chain release by guest on January 23, 2018 http://www.jbc.org/ Downloaded from Nucleation of a yeast prion by mammalian proteins factors, eRF1 and eRF3. The EMBO Journal. 1995;14:4065-72. PMCID: PMC394485 19. Chernoff YO, Derkatch IL, Inge-Vechtomov SG. Multicopy SUP35 gene induces de novo appearance of psi-like factors in the yeast Saccharomyces cerevisiae. Current Genetics. 1993;24:268-70. doi:10.1007/BF00351802 20. Derkatch IL, Chernoff YO, Kushnirov VV, Inge-Vechtomov SG, Liebman SW. Genesis and variability of [PSI] prion factors in Saccharomyces cerevisiae. Genetics. 1996;144:1375-86. PMCID: PMC1207691 21. Masison DC, Wickner RB. Prion-inducing domain of yeast Ure2p and protease resistance of Ure2p in prion-containing cells. Science. 1995;270:93-5. doi:10.1126/science.270.5233.93 22. Wickner RB. [URE3] as an altered URE2 protein: evidence for a prion analog in Saccharomyces cerevisiae. Science. 1994;264: 566–9. doi: 0.1126/science.7909170 23. Derkatch IL, Bradley ME, Zhou P, Chernoff YO, Liebman SW. Genetic and environmental factors affecting the de novo appearance of the [PSI+] prion in Saccharomyces cerevisiae. Genetics. 1997;147:507–19. PMCID: PMC1208174 24. Derkatch IL, Bradley ME, Hong JY, Liebman SW. Prions affect the appearance of other prions: the story of [PIN+]. Cell. 2001;106:171–82. doi:10.1016/S0092-8674(01)00427-5. 25. Osherovich LZ, Weissman JS. Multiple Gln/Asn-rich prion domains confer susceptibility to induction of the yeast [PSI+] prion. Cell. 2001;106:183–94. doi:10.1016/S0092-8674(01)00440-8 26. Goehler H, Droge A, Lurz R, Schnoegl S, Chernoff YO, Wanker EE. Pathogenic polyglutamine tracts are potent inducers of spontaneous Sup35 and Rnq1 amyloidogenesis. PLoS One. 2010;5:e9642. doi:10.1371/journal.pone.0009642 27. Suzuki G, Suzuki G, Shimazu N, Tanaka M. A yeast prion, Mod5, promotes acquired drug resistance and cell survival under environmental stress. Science. 2012. 336(6079):355-9. doi:10.1126/science.1219491 28. Z. Du, K.W. Park, H. Yu, Q. Fan, L. Li. Newly identified prion linked to the chromatin-remodeling factor Swi1 in Saccharomyces cerevisiae. Nat. Genet. 2008; 460-465. doi: 10.1038/ng.112 29. Fischer M, Rülicke T, Raeber A, Sailer A, Moser M, Oesch B, et al. Prion protein (PrP) with aminoproximal deletions restoring susceptibility of PrP knockout mice to scrapie. The EMBO Journal. 1996. 15:1255–64. doi:10.5167/uzh-1867 30. Näslund J, Schierhorn A, Hellman U, Lannfelt L, Roses AD, Tjernberg LO, et al. Relative abundance of Alzheimer Aβ amyloid peptide variants in Alzheimer disease and normal aging. Proceedings of the National Academy of Sciences of USA. 1994;91:8378-82. PMCID: PMC44609 31. Rubel AA, Ryzhova TA, Antonets KS, Chernoff YO, Galkin AP. Identification of PrP sequences essential for the interaction between the PrP polymers and Aβ peptide in a yeast-based assay. Prion. 2013;7:469–76. doi: 10.4161/pri.26867 32. Halfmann R, Lindquist SL. Screening for amyloid aggregation by semi-denaturing detergent-agarose gel electrophoresis. Journal of Visualized Experiments. 2008;17:e838. doi:10.3791/838 33. Chernova TA, Romanyuk AV, Karpova TS, Shanks JR, Ali M, Howie RL, et al. Prion induction by the short-lived, stress-induced protein Lsb2 is regulated by ubiquitination and association with the actin cytoskeleton. Molecular Cell. 2011;43:242–52. doi:10.1016/j.molcel.2011.07.001 34. Chernova TA, Kiktev DA, Romanyuk AV, Shanks JR, Laur O, Ali M, et al. Yeast short-lived actinassociated protein forms a metastable prion in response to thermal stress. Cell Reports. 2017;18:751-61. doi:10.1016/j.celrep.2016.12.082 35. Stefanis L. Alpha-synuclein in Parkinson's disease. Cold Spring Harbor Perspectives in Medicine. 2012;4:a009399. doi: 10.1101/cshperspect.a009399 36. Li SX, Tong YP, Xie XC, Wang QH, Zhou HN, Han Y, et al. Octameric structure of the human bifunctional enzyme PAICS in purine biosynthesis. Journal of Molecular Biology. 2007;366:1603-14. doi:10.1016/j.jmb.2006.12.027 37. Zhou P, Derkatch IL, Liebman SW. The relationship between visible intracellular aggregates that appear after overexpression of Sup35 and the yeast prion-like elements [PSI+] and [PIN+]. Molecular Microbiology. 2001;39: 37-46. doi: 10.1046/j.1365-2958.2001.02224.x by guest on January 23, 2018 http://www.jbc.org/ Downloaded from Nucleation of a yeast prion by mammalian proteins 38. Ganusova EE, Ozolins LN, Bhagat S, Newnam GP, Wegrzyn RD, Sherman NY et al. Modulation of prion formation, aggregation, and toxicity by the actin cytoskeleton in yeast. Mol Cell Biol. 2006;26:617-29. doi:10.1128/MCB.26.2.617-629.2006 39. Chernoff YO, Lindquist SL, Ono B, Inge-Vechtomov SG, Liebman SW. Role of the chaperone protein Hsp104 in propagation of the yeast prion-like factor [psi+]. Science. 1995;268: 880–4. doi:10.1016/0168-9525(95)90533-2 40. Chernova TA, Wilkinson KD, Chernoff, YO. Prions, chaperones and proteostasis in yeast. Cold Spring Harbor Perspectives in Biology. 2017;9: pii:a023663. doi:10.1101/CSHPERSPECT.a023663 41. Mori H, Takio K, Ogawara M, Selkoe DJ. Mass spectrometry of purified amyloid beta protein in Alzheimer's disease. The Journal of Biological Chemistry. 1992;267:17082–86. PMID: 1512246 42. Jarrett JT, Berger EP, Lansbury PT. The carboxy terminus of the β-amyloid protein is critical for the seeding of amyloid formation - implications for the pathogenesis of Alzheimer's disease. Biochemistry. 1993;32:4693–7. doi:10.1021/bi00069a001 43. Colvin MT, Silvers R, Ni QZ, Can TV, Sergeyev I, Rosay M, et al. Atomic resolution structure of monomorphic Aβ42 amyloid fibrils. Journal of the American Chemical Society. 2016;138:9663-74. doi:10.1021/jacs.6b05129 44. Walti MA, Ravotti F, Arai H, Glabe CG, Wall JS, Böckmann A, et al.. Atomic-resolution structure of a disease-relevant Aβ (1-42) amyloid fibril. Proceedings of the National Academy of Sciences of USA. 2016;113:4976–84. doi: 10.1073/pnas.1600749113 45. Hilbich C, Kisters-Woike B, Reed J, Masters CL, Beyreuther K. Substitutions of hydrophobic amino acids reduce the amyloidogenicity of Alzheimer's disease beta A4 peptides. Journal of Molecular Biology. 1992;228:460–73. doi:10.1016/0022-2836(92)90835-8 46. Morimoto A, Irie K, Murakami K, Masuda Y, Ohigashi H, Nagao M, et al. Analysis of the secondary structure of beta-amyloid (Abeta42) fibrils by systematic proline replacement. The Journal of Biological Chemistry. 2004;279:52781–8. doi:10.1074/jbc.M406262200 47. Williams AD, Portelius E, Kheterpal I, Guo JT, Cook KD, Xu Y, et al. Mapping abeta amyloid fibril secondary structure using scanning proline mutagenesis. Journal of Molecular Biology. 2004;335:833–42. doi: 10.1016/j.jmb.2003.11.008 48. Paravastu AK, Leapman RD, Yau WM, Tycko R. Molecular structural basis for polymorphism in Alzheimer's β-amyloid fibrils. Proceedings of the National Academy of Sciences of USA. 2008;105:18349–54. doi:10.1073/pnas.0806270105 49. Tycko R. Molecular structure of amyloid fibrils: insights from solid-state NMR. Quarterly Review of Biophysics. 2006;39:1-55. doi: 10.1017/S0033583506004173 50. Xiao Y, Ma B, McElheny D, Parthasarathy S, Long F, Hoshi M, et al. Aβ(1-42) fibril structure illuminates self-recognition and replication of amyloid in Alzheimer's disease. Nature Structural and Molecular Biology. 2015;22:499-505. doi: 10.1038/nsmb.2991 51. Perrier V, Kaneko K, Safar J, Vergara J, Tremblay P, DeArmond SJ, et al. Dominant-negative inhibition of prion replication in transgenic mice. Proceedings of the National Academy of Sciences of USA. 2002;99:13079-84. doi:10.1073/pnas.182425299 52. Flechsig E, Weissmann C. The role of PrP in health and disease. Current Molecular Medicine. 2004;4:337-53. doi:10.2174/1566524043360645 53. Ghetti B, Piccardo P, Frangione B, Bugiani O, Giaccone G, Young K, et al. Prion protein amyloidosis. Brain Pathology. 1996;6:127–45. doi:10.1111/j.1750-3639.1996.tb00796.x 54. Kitamoto T, Iizuka R, Tateishi J. An amber mutation of prion protein in Gerstmann- Sträussler syndrome with mutant PrP plaques. Biochemical and Biophysical Research Communications. 1993;192:532–7. doi:10.1006/bbrc.1993.1447 55. Lorenz H, Windl O, Kretzschmar HA. Cellular phenotyping of secretory and nuclear prion proteins associated with inherited prion diseases. The Journal of Biological Chemistry. 2002;277:8508–8516. doi:10.1074/jbc.M110197200 56. Theint T, Nadaud PS, Surewicz K, Surewicz WK, Jaroniec CP. 13C and 15N chemical shift assignments of mammalian Y145Stop prion protein amyloid fibrils. Biomol. NMR Assign. 2017;11:75-80. doi: by guest on January 23, 2018 http://www.jbc.org/ Downloaded from Nucleation of a yeast prion by mammalian proteins 10.1007/s12104-016-9723-6 57. Chiesa R, Piccardo P, Ghetti N, Harris DA. Neurological illness in transgenic mice expressing a prion protein with an insertional mutation. Neuron. 1998;21:1339–51. doi:10.1016/S0896-6273(00)80653-4 58. Prusiner SB, Scott MR. Genetics of prions. Annual Review of Genetics. 1997;31:139–75. doi: 10.1146/annurev.genet.31.1.139 59. Kochneva-Pervukhova NV, Poznyakovski AI, Smirnov VN, Ter-Avanesyan MD. C-terminal truncation of the Sup35 protein increases the frequency of de novo generation of a prion-based [PSI+] determinant in Saccharomyces cerevisiae. Current Genetics. 1998;34:146-51. PMID: 9724418 60. Tanaka M, Collins SR, Toyama BH, Weissman JS. The physical basis of how prion conformations determine strain phenotypes. Nature. 2006;442:585–9. doi: 10.1038/nature04922 61. Newby GA, Kiriakov S, HallacliE, KayatekinC, Tsvetkov P, Mancuso CP, Bonner JM, Hesse WR, Chakrabortee S, Manogaran AL, Liebman SW, Lindquist S, Khalil AS. Genetic tool to track protein aggregates and control protein inheritance. Cell. In press. doi: 10.1016/j.cell.2017.09.041 62. Derkatch IL, Uptain SM, Outeiro TF, Krishnan R, Lindquist SL, Liebman SW. Effects of Q/N-rich, polyQ, and non-polyQ amyloids on the de novo formation of the [PSI+] prion in yeast and aggregation of Sup35 in vitro. Proceedings of the National Academy of Sciences of USA. 2004;101:12934-9. doi:10.1073/pnas.0404968101 63. Choe YJ, Ryu Y, Kim HJ, Seok YJ. Increased [PSI+] appearance by fusion of Rnq1 with the prion domain of Sup35 in Saccharomyces cerevisiae. Eukaryotic Cell. 2009;8:968–76. doi:10.1128/EC.00353-08 64. Jansen C, Parchi P, Capellari S, Vermeij AJ, Corrado P, Baas F, Strammiello R, et al. Prion protein amyloidosis with divergent phenotype associated with two novel nonsense mutations in PRNP. Acta Neuropathologica 2010;119:189-97. doi:10.1007/s00401-009-0609-x 65. Kovač V, Hafner-Bratkovič I, Čurin Šerbec V. Anchorless forms of prion protein - Impact of truncation on structure destabilization and prion protein conversion. Biochemical and Biophysical Research Communications. 2016;481:1-6. doi:10.1016/j.bbrc.2016.11.036 66. Diaz-Espinoza R, Soto C. High-resolution structure of infectious prion protein: the final frontier. Nature Structural & Molecular Biology. 2012;19:370–7. doi:10.1038/nsmb.2266 67. Groveman BR, Kraus A, Raymond LD, Dolan MA, Anson KJ, Dorward DW, et al. Charge neutralization of the central lysine cluster in prion protein (PrP) promotes PrP(Sc)-like folding of recombinant PrP amyloids. The Journal of Biological Chemistry. 2015;290:1119-28. doi:10.1074/jbc.M114.619627 68. Requena JR, Wille H. The structure of the infectious prion protein: experimental data and molecular models. Prion. 2014;8:60–6. doi:10.4161/pri.28368 69. Benetti F, Legname G. New insights into structural determinants of prion protein folding and stability. Prion. 2015;9:119-24. doi:10.1080/19336896.2015.1022023 70. Govaerts C, Wille H, Prusiner SB, Cohen FE. Evidence for assembly of prions with left-handed betahelices into trimers. Proceedings of the National Academy of Sciences of USA. 2004;101:8342-7. doi:10.1073/pnas.0402254101 71. Cobb NJ, Sönnichsen FD, McHaourab H, Surewicz WK. Molecular architecture of human prion protein amyloid: a parallel, in-register β-structure. Proceedings of the National Academy of Sciences of USA. 2007;104:18946–51. doi:10.1073/pnas.0706522104 72. Saijo E, Hughson AG, Raymond GJ, Suzuki A, Horiuchi M, Caughey B. PrPSc-specific antibody reveals C-terminal conformational differences between prion strains. Journal of Virology. 2016;90:4905-13. doi: 10.1128/JVI.00088-16. 73. Bartz JC. Prion strain diversity. Cold Spring Harbor Perspectives in Medicine. 2016; 6:pii:a024349. doi:0.1101/cshperspect.a024349 74. Ghaemmaghami S. Biology and genetics of PrP prion strains. Cold Spring Harbor Perspectives in Medicine. 2016;6:pii:a026922. doi:10.1101/cshperspect.a026922 75. Cohen M, Appleby B, Safar JG. Distinct prion-like strains of amyloid beta implicated in phenotypic by guest on January 23, 2018 http://www.jbc.org/ diversity of Alzheimer's disease. Prion. 2016;10:9-17. doi:10.1080/19336896.2015.1123371 76. Makarava N, Baskakov IV. The evolution of transmissible prions: the role of deformed templating. PLOS Pathogens. 2013;9:e1003759. doi:10.1371/journal.ppat.1003759 77. Bagriantsev S, Liebman SW. Modulation of Αβ42 low-n oligomerization using a novel yeast reporter system. BMC Biology. 2006;4:32. doi:10.1186/1741-7007-4-32 78. Porzoor A, Macreadie I. Yeast as a model for studies on Aβ aggregation toxicity in Alzheimer's disease, autophagic responses, and drug screening. Methods in Molecular Biology. 2016;1303:217-26. doi: 10.1007/978-1-4939-2627-5_12 79. Treusch S, Hamamichi S, Goodman JL, Matlack KE, Chung CY, Baru V, et al. Functional links between Abeta toxicity, endocytic trafficking, and Alzheimer's disease risk factors in yeast. Science. 2011;334:1241–5. doi: 10.1126/science.1213210 80. Chernoff YO, Galkin AP, Lewitin E, Chernova TA, Newnam GP, Belenkiy SM. Evolutionary conservation of prion-forming abilities of the yeast Sup35 protein. Molecular Microbiology. 2000;35:865-76. doi:10.1046/j.1365-2958.2000.01761 81. Kushnirov VV, Ter-Avanesyan MD, Didichenko SA, Smirnov VN, Chernoff YO, Derkach IL, et al. Divergence and conservation of SUP2 (SUP35) gene of yeast Pichia pinus and Saccharomyces cerevisiae. Yeast. 1990;6:461-72. doi:10.1002/yea.320060603 82. Newnam, GP, Wegrzyn RD, Lindquist SL, Chernoff YO. Antagonistic interactions between yeast chaperones Hsp104 and Hsp70 in prion curing. Molecular and Cellular Biology. 1999;19:1325–33. doi:10.1128/MCB.19.2.1325 83. Krammer C, Suhre MH, Kremmer E, Diemer C, Hess S, Schätzl HM, et al. Prion protein/protein interactions: fusion with yeast Sup35p-NM modulates cytosolic PrP aggregation in mammalian cells. The FASEB Journal. 2008;22:762-73. doi:10.1096/fj.07-8733com 84. Kutzler MA, Cao C, Bai Y, Dong H, Choe PY, Saulino V, et al. Mapping of immune responses following wild-type and mutant Abeta42 plasmid or peptide vaccination in different mouse haplotypes and HLA Class II transgenic mice. Vaccine. 2006;24:4630-9. doi:10.1016/j.vaccine.2005.08.036 85. Serio TR, Lindquist SL. [PSI+]: an epigenetic modulator of translation termination efficiency. Annual Review of Cell and Developmental Biology. 1999;15:661–703. doi: 10.1146/annurev.cellbio.15.1.661 86. Chernoff YO, Newnam GP, Kumar J, Allen K, Zink AD. Evidence for a protein mutator in yeast: Role of the Hsp70-related chaperone Ssb in formation, stability, and toxicity of the [PSI] prion. Molecular and Cellular Biology. 1999;19:8103–12. doi:10.1128/MCB.19.12.8103 87. Chernova TA, Allen KD, Wesoloski LM, Shanks JR, Chernoff YO, Wilkinson KD. Pleiotropic effects of Ubp6 loss on drug sensitivities and yeast prion are due to depletion of free ubiquitin pool. The Journal of Biological Chemistry. 2003;278:52102-15. doi:10.1074/jbc.M310283200 88. Rubel AA, Saifitdinova AF, Lada AG, Nizhnikov AA, Inge-Vechtomov SG, Galkin AP. Yeast chaperone Hspl04 regulates gene expression on the posttranscriptional level. Mol. Biol. (Mosk.). 2008;42:123–30. PMID: 18389629 89. Sambrook J, Russell DW. Molecular Cloning: A Laboratory Manual. 3 rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press. 2001. ISBN-13 978-0-87969-577-4 90. Ertmer A, Gilch S, Yun SW, Flechsig E, Klebl B, Stein-Gerlach M, et al. The tyrosine kinase inhibitor STI571 induces cellular clearance of PrPSc in prion-infected cells. The Journal of Biological Chemistry. 2004;279:41918–27. doi:10.1074/jbc.M405652200 91. Parsell DA, Sanchez Y, Stitzel JD, Lindquist S. Hsp104 is a highly conserved protein with two essential nucleotide-binding sites. Nature. 1991;353: 270-3. doi:10.1038/353270a0 92. Patino MM, Liu JJ, Glover JR, Lindquist SL. Support for the prion hypothesis for inheritance of a phenotypic trait in yeast. Science. 1996;273:622-6. doi:10.1126/science.273.5275.622. 93. Kaiser C, Michaelis S, Mitchell A. Methods in Yeast Genetics: A Cold Spring Harbor Laboratory Course Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press. 1994. ISBN0879694513 94. Ghahramani, S. Fundamentals of Probability. 2nd edn. New Jersey: Pearson Prentice Hall. 2000. ISBN 0-13-145340-8

    PY - 2018/1/12

    Y1 - 2018/1/12

    N2 - Fibrous cross-β aggregates (amyloids) and their transmissible forms (prions) cause diseases in mammals (including humans) and control heritable traits in yeast. Initial nucleation of a yeast prion by transiently overproduced prion-forming protein or its (typically, QN-rich) prion domain is efficient only in the presence of another aggregated (in most cases, QN-rich) protein. Here, we demonstrate that a fusion of the prion domain of yeast protein Sup35 to some non-QN-rich mammalian proteins, associated with amyloid diseases, promotes nucleation of Sup35 prions in the absence of preexisting aggregates. In contrast, both a fusion of the Sup35 prion domain to a multimeric non-amyloidogenic protein, and an expression of a mammalian amyloidogenic protein that is not fused to the Sup35 prion domain failed to promote prion nucleation, further indicating that physical linkage of a mammalian amyloidogenic protein to the prion domain of a yeast protein is required for the nucleation of a yeast prion. Biochemical and cytological approaches confirmed the nucleation of protein aggregates in the yeast cell. Sequence alterations antagonizing or enhancing amyloidogenicity of human β amyloid (Aβ, associated with Alzheimer disease) and mouse PrP (associated with prion diseases) respectively antagonized or enhanced nucleation of a yeast prion by these proteins. The yeast-based prion nucleation assay, developed in our work, can be employed for mutational dissection of amyloidogenic proteins. We anticipate that it will aid in the identification of chemicals that influence initial amyloid nucleation and in searching for new amyloidogenic proteins in a variety of proteomes.

    AB - Fibrous cross-β aggregates (amyloids) and their transmissible forms (prions) cause diseases in mammals (including humans) and control heritable traits in yeast. Initial nucleation of a yeast prion by transiently overproduced prion-forming protein or its (typically, QN-rich) prion domain is efficient only in the presence of another aggregated (in most cases, QN-rich) protein. Here, we demonstrate that a fusion of the prion domain of yeast protein Sup35 to some non-QN-rich mammalian proteins, associated with amyloid diseases, promotes nucleation of Sup35 prions in the absence of preexisting aggregates. In contrast, both a fusion of the Sup35 prion domain to a multimeric non-amyloidogenic protein, and an expression of a mammalian amyloidogenic protein that is not fused to the Sup35 prion domain failed to promote prion nucleation, further indicating that physical linkage of a mammalian amyloidogenic protein to the prion domain of a yeast protein is required for the nucleation of a yeast prion. Biochemical and cytological approaches confirmed the nucleation of protein aggregates in the yeast cell. Sequence alterations antagonizing or enhancing amyloidogenicity of human β amyloid (Aβ, associated with Alzheimer disease) and mouse PrP (associated with prion diseases) respectively antagonized or enhanced nucleation of a yeast prion by these proteins. The yeast-based prion nucleation assay, developed in our work, can be employed for mutational dissection of amyloidogenic proteins. We anticipate that it will aid in the identification of chemicals that influence initial amyloid nucleation and in searching for new amyloidogenic proteins in a variety of proteomes.

    KW - Journal Article

    U2 - 10.1074/jbc.M117.809004

    DO - 10.1074/jbc.M117.809004

    M3 - Article

    JO - Journal of Biological Chemistry

    JF - Journal of Biological Chemistry

    SN - 0021-9258

    ER -