Localization effects for Dirichlet problems in domains surrounded by thin stiff and heavy bands

Delfina Gómez, Sergei A. Nazarov, Maria Eugenia Pérez-Martínez

Результат исследований: Научные публикации в периодических изданияхстатья

Аннотация

We consider a Dirichlet spectral problem for a second order differential operator, with piecewise constant coefficients, in a domain Ωε in the plane R2. Here Ωε is Ω∪ωε∪Γ, where Ω is a fixed bounded domain with boundary Γ, ωε is a curvilinear band of width O(ε), and Γ=Ω‾∩ω‾ε. The density and stiffness constants are of order ε−m−t and ε−t respectively in this band, while they are of order 1 in Ω; t≥1, m>2, and ε is a small positive parameter. We address the asymptotic behavior, as ε→0, for the eigenvalues and the corresponding eigenfunctions. In particular, we show certain localization effects for eigenfunctions associated with low frequencies. This is deeply involved with the extrema of the curvature of Γ.

Язык оригиналаанглийский
Страницы (с-по)1160-1195
Число страниц36
ЖурналJournal of Differential Equations
Том270
DOI
СостояниеОпубликовано - 5 янв 2021

Предметные области Scopus

  • Анализ
  • Прикладная математика

Fingerprint Подробные сведения о темах исследования «Localization effects for Dirichlet problems in domains surrounded by thin stiff and heavy bands». Вместе они формируют уникальный семантический отпечаток (fingerprint).

Цитировать