DOI

We show that the volume of a simple Riemannian metric on Dn is locally monotone with respect to its boundary distance function. Namely if g is a simple metric on Dn and g′ is sufficiently close to g and induces boundary distances greater or equal to those of g, then vol(Dn, g′) ≥ vol(Dn, g). Furthermore, the same holds for Finsler metrics and the Holmes-Thompson definition of volume. As an application, we give a new proof of injectivity of the geodesic ray transform for a simple Finsler metric.

Язык оригиналаанглийский
Страницы (с-по)83-96
Число страниц14
ЖурналGeometriae Dedicata
Том164
Номер выпуска1
DOI
СостояниеОпубликовано - 1 июн 2013

    Предметные области Scopus

  • Геометрия и топология

ID: 49983284