Leonov's method of nonlocal reduction and its further development

Vera B. Smirnova, Anton V. Proskurnikov

Результат исследований: Публикации в книгах, отчётах, сборниках, трудах конференцийстатья в сборнике материалов конференциинаучнаярецензирование

Аннотация

The method of nonlocal reduction has been proposed by G.A. Leonov in the 1980s for stability analysis of nonlinear feedback systems. The method combines the comparison principle with Lyapunov techniques. A feedback system is investigated via its reduction to a simpler "compar-ison" system, whose dynamics can be studied efficiently. The trajectories of the comparison system are explicitly used in the design of Lyapunov functions. Leonov's method proves to be an efficient tool for analysis of Lur'e-type systems with periodic nonlinearities and infinite sets of equilibria. In this paper, we further refine the nonlocal reduction method for periodic systems and obtain new sufficient frequency-algebraic conditions ensuring the convergence of every solution to some equilibrium point (gradient-like behavior).
Язык оригиналаанглийский
Название основной публикацииEuropean Control Conference (ECC 2020), Saint Petersburg, Russia, May 12-15, 2020.
Число страниц6
ISBN (электронное издание)9783907144022
СостояниеПринято в печать - 2020
Событие18th European Control Conference, ECC 2020 - Saint Petersburg, Российская Федерация
Продолжительность: 12 мая 202015 мая 2020

конференция

конференция18th European Control Conference, ECC 2020
СтранаРоссийская Федерация
ГородSaint Petersburg
Период12/05/2015/05/20

Fingerprint Подробные сведения о темах исследования «Leonov's method of nonlocal reduction and its further development». Вместе они формируют уникальный семантический отпечаток (fingerprint).

Цитировать