Integro-differential equations of the convolution on a finite interval with kernel having a logarithmic singularity

Результат исследований: Научные публикации в периодических изданияхстатьярецензирование

Аннотация

The integro-differential equations d2n/dx2n-1 1 (a[(x - t)2] ln |x - t| + b[(x - t)2])φ(t)dt = f(x) of the convolution on an interval with infinitely differentiable functions a(s) and b(s) decreasing at infinity are considered. The Fourier symbol is assumed to be sectorial, that is, it has positive projection on some direction in the complex plane. The existence and uniqueness of solutions in the classes of functions representable in the form φ(t) = (1 - t2)δn φ(t), δn = n - 1 + ε, ε < 0, φ ∈ C1 [-1, 1] are proved. Properties concerning the smoothness of solutions are described.

Язык оригиналаанглийский
Страницы (с-по)1161-1165
Число страниц5
ЖурналJournal of Mathematical Sciences
Том79
Номер выпуска4
DOI
СостояниеОпубликовано - 1 янв 1996

Предметные области Scopus

  • Теория вероятности и статистика
  • Математика (все)
  • Прикладная математика

Fingerprint Подробные сведения о темах исследования «Integro-differential equations of the convolution on a finite interval with kernel having a logarithmic singularity». Вместе они формируют уникальный семантический отпечаток (fingerprint).

Цитировать