Standard

Hochschild cohomology for algebras of dihedral type. Iv. the family D(2β)(k,s,0). / Generalov, A. I.; Kosovskaya, N. Yu.

в: Journal of Mathematical Sciences (United States), Том 209, № 4, 2015, стр. 522-548.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Generalov, AI & Kosovskaya, NY 2015, 'Hochschild cohomology for algebras of dihedral type. Iv. the family D(2β)(k,s,0)', Journal of Mathematical Sciences (United States), Том. 209, № 4, стр. 522-548. https://doi.org/10.1007/s10958-015-2510-6

APA

Generalov, A. I., & Kosovskaya, N. Y. (2015). Hochschild cohomology for algebras of dihedral type. Iv. the family D(2β)(k,s,0). Journal of Mathematical Sciences (United States), 209(4), 522-548. https://doi.org/10.1007/s10958-015-2510-6

Vancouver

Generalov AI, Kosovskaya NY. Hochschild cohomology for algebras of dihedral type. Iv. the family D(2β)(k,s,0). Journal of Mathematical Sciences (United States). 2015;209(4):522-548. https://doi.org/10.1007/s10958-015-2510-6

Author

Generalov, A. I. ; Kosovskaya, N. Yu. / Hochschild cohomology for algebras of dihedral type. Iv. the family D(2β)(k,s,0). в: Journal of Mathematical Sciences (United States). 2015 ; Том 209, № 4. стр. 522-548.

BibTeX

@article{11c72210bbb64746a66bf6eca2388ce9,
title = "Hochschild cohomology for algebras of dihedral type. Iv. the family D(2β)(k,s,0)",
abstract = "The Hochschild cohomology groups for algebras of dihedral type that lie in the family D(2β)(k,s,c) (in the famous K. Erdmann{\textquoteright}s classification) are computed in the case where the parameter c included in the defining relations of algebras from this family is equal to zero. The calculation relies upon the construction of a bimodule resolution for algebras from the above family.",
keywords = "Vector Space, Cohomology Group, Short Exact Sequence, Tree Class, Local Algebra",
author = "Generalov, {A. I.} and Kosovskaya, {N. Yu.}",
note = "Generalov, A.I., Kosovskaya, N.Y. Hochschild Cohomology for Algebras of Dihedral Type. IV. The family D(2B)(k, s, 0). J Math Sci 209, 522–548 (2015). https://doi.org/10.1007/s10958-015-2510-6",
year = "2015",
doi = "10.1007/s10958-015-2510-6",
language = "English",
volume = "209",
pages = "522--548",
journal = "Journal of Mathematical Sciences",
issn = "1072-3374",
publisher = "Springer Nature",
number = "4",

}

RIS

TY - JOUR

T1 - Hochschild cohomology for algebras of dihedral type. Iv. the family D(2β)(k,s,0)

AU - Generalov, A. I.

AU - Kosovskaya, N. Yu.

N1 - Generalov, A.I., Kosovskaya, N.Y. Hochschild Cohomology for Algebras of Dihedral Type. IV. The family D(2B)(k, s, 0). J Math Sci 209, 522–548 (2015). https://doi.org/10.1007/s10958-015-2510-6

PY - 2015

Y1 - 2015

N2 - The Hochschild cohomology groups for algebras of dihedral type that lie in the family D(2β)(k,s,c) (in the famous K. Erdmann’s classification) are computed in the case where the parameter c included in the defining relations of algebras from this family is equal to zero. The calculation relies upon the construction of a bimodule resolution for algebras from the above family.

AB - The Hochschild cohomology groups for algebras of dihedral type that lie in the family D(2β)(k,s,c) (in the famous K. Erdmann’s classification) are computed in the case where the parameter c included in the defining relations of algebras from this family is equal to zero. The calculation relies upon the construction of a bimodule resolution for algebras from the above family.

KW - Vector Space

KW - Cohomology Group

KW - Short Exact Sequence

KW - Tree Class

KW - Local Algebra

UR - http://www.scopus.com/inward/record.url?scp=84943362773&partnerID=8YFLogxK

U2 - 10.1007/s10958-015-2510-6

DO - 10.1007/s10958-015-2510-6

M3 - Article

AN - SCOPUS:84943362773

VL - 209

SP - 522

EP - 548

JO - Journal of Mathematical Sciences

JF - Journal of Mathematical Sciences

SN - 1072-3374

IS - 4

ER -

ID: 51927807