HETEROLOGOUS INTERFERONS SYNTHESIS IN YEAST PICHIA PASTORIS

Результат исследований: Научные публикации в периодических изданияхстатья

6 Цитирования (Scopus)

Выдержка

The HuIFNA16, HuIFNB1, and BoIFNG genes encoding human alpha 16, beta-interferons and bovine gamma-interferon were cloned under the control of the yeast Pichia pastoris AOX1 gene promoter. The yeast strains producing heterologous interferons intracellularly and extracellularly were constructed. There was no effect of high level of heterologous protein synthesis on the yeast P. pastoris cell growth, unlike yeast Saccharomyces cerevisiae. The considerable part of the heterologous interferons was detected in the yeast P. pastoris soluble protein fraction but not in the "inclusion bodies." The treatment of human beta-interferon with endoglycosidase H showed that protein was expressed in glycosylated and unglycosylated forms. On the strength of these data, the hypothesis was suggested that the more effective heterologous gene expression in yeast P. pastoris and enhanced resistance of the methylotrophic yeast to negative effects of recombinant proteins was due to the special features of its metabolism.
Язык оригиналаанглийский
Число страниц6
ЖурналApplied Biochemistry and Microbiology
Том46
Номер выпуска4
DOI
СостояниеОпубликовано - 2010

Отпечаток

Pichia
Yeast
Interferons
Yeasts
Interferon-beta
Interferon-gamma
Proteins
Glycoside Hydrolases
Inclusion Bodies
Gene encoding
Recombinant Proteins
Cell growth
Genes
Saccharomyces cerevisiae
Metabolism
Gene expression
Gene Expression
Growth

Цитировать

@article{768575890b134845b05167bf775f0dbd,
title = "HETEROLOGOUS INTERFERONS SYNTHESIS IN YEAST PICHIA PASTORIS",
abstract = "The HuIFNA16, HuIFNB1, and BoIFNG genes encoding human alpha 16, beta-interferons and bovine gamma-interferon were cloned under the control of the yeast Pichia pastoris AOX1 gene promoter. The yeast strains producing heterologous interferons intracellularly and extracellularly were constructed. There was no effect of high level of heterologous protein synthesis on the yeast P. pastoris cell growth, unlike yeast Saccharomyces cerevisiae. The considerable part of the heterologous interferons was detected in the yeast P. pastoris soluble protein fraction but not in the {"}inclusion bodies.{"} The treatment of human beta-interferon with endoglycosidase H showed that protein was expressed in glycosylated and unglycosylated forms. On the strength of these data, the hypothesis was suggested that the more effective heterologous gene expression in yeast P. pastoris and enhanced resistance of the methylotrophic yeast to negative effects of recombinant proteins was due to the special features of its metabolism.",
author = "Padkina, {M. V.} and Parfenova, {L. V.} and Gradoboeva, {A. E.} and Самбук, {Елена Викторовна}",
year = "2010",
doi = "10.1134/S0003683810040083",
language = "English",
volume = "46",
journal = "Applied Biochemistry and Microbiology",
issn = "0003-6838",
publisher = "Pleiades Publishing",
number = "4",

}

HETEROLOGOUS INTERFERONS SYNTHESIS IN YEAST PICHIA PASTORIS. / Padkina, M. V.; Parfenova, L. V.; Gradoboeva, A. E.; Самбук, Елена Викторовна.

В: Applied Biochemistry and Microbiology, Том 46, № 4, 2010.

Результат исследований: Научные публикации в периодических изданияхстатья

TY - JOUR

T1 - HETEROLOGOUS INTERFERONS SYNTHESIS IN YEAST PICHIA PASTORIS

AU - Padkina, M. V.

AU - Parfenova, L. V.

AU - Gradoboeva, A. E.

AU - Самбук, Елена Викторовна

PY - 2010

Y1 - 2010

N2 - The HuIFNA16, HuIFNB1, and BoIFNG genes encoding human alpha 16, beta-interferons and bovine gamma-interferon were cloned under the control of the yeast Pichia pastoris AOX1 gene promoter. The yeast strains producing heterologous interferons intracellularly and extracellularly were constructed. There was no effect of high level of heterologous protein synthesis on the yeast P. pastoris cell growth, unlike yeast Saccharomyces cerevisiae. The considerable part of the heterologous interferons was detected in the yeast P. pastoris soluble protein fraction but not in the "inclusion bodies." The treatment of human beta-interferon with endoglycosidase H showed that protein was expressed in glycosylated and unglycosylated forms. On the strength of these data, the hypothesis was suggested that the more effective heterologous gene expression in yeast P. pastoris and enhanced resistance of the methylotrophic yeast to negative effects of recombinant proteins was due to the special features of its metabolism.

AB - The HuIFNA16, HuIFNB1, and BoIFNG genes encoding human alpha 16, beta-interferons and bovine gamma-interferon were cloned under the control of the yeast Pichia pastoris AOX1 gene promoter. The yeast strains producing heterologous interferons intracellularly and extracellularly were constructed. There was no effect of high level of heterologous protein synthesis on the yeast P. pastoris cell growth, unlike yeast Saccharomyces cerevisiae. The considerable part of the heterologous interferons was detected in the yeast P. pastoris soluble protein fraction but not in the "inclusion bodies." The treatment of human beta-interferon with endoglycosidase H showed that protein was expressed in glycosylated and unglycosylated forms. On the strength of these data, the hypothesis was suggested that the more effective heterologous gene expression in yeast P. pastoris and enhanced resistance of the methylotrophic yeast to negative effects of recombinant proteins was due to the special features of its metabolism.

U2 - 10.1134/S0003683810040083

DO - 10.1134/S0003683810040083

M3 - Article

VL - 46

JO - Applied Biochemistry and Microbiology

JF - Applied Biochemistry and Microbiology

SN - 0003-6838

IS - 4

ER -