Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Half-cycle light pulse generation via femtosecond laser-induced plasma mirror. / Пахомов, Антон Владимирович; Архипов, Ростислав Михайлович; Архипов, Михаил Викторович; Дьячкова, Ольга Олеговна; Розанов, Николай Николаевич.
в: Optics Letters, Том 50, № 19, 01.10.2025, стр. 6181-6184.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - Half-cycle light pulse generation via femtosecond laser-induced plasma mirror
AU - Пахомов, Антон Владимирович
AU - Архипов, Ростислав Михайлович
AU - Архипов, Михаил Викторович
AU - Дьячкова, Ольга Олеговна
AU - Розанов, Николай Николаевич
PY - 2025/10/1
Y1 - 2025/10/1
N2 - We demonstrate a novel, to the best of our knowledge, mechanism for generating half-cycle unipolar light pulses through reflection of an intense single-cycle femtosecond laser pulse from a transient plasma layer. The leading pulse edge ionizes a thin medium layer, while the trailing edge reflects from the plasma boundary, producing subcycle unipolar waveforms. Our 1D Maxwell-plasma model reveals universal scaling laws for pulse shape versus plasma density and thickness, showing how thin layers yield isolated half-cycle pulses, while thicker layers produce rectangular waveforms. This all-optical approach enables attosecond field synthesis without complex phase-matching requirements, bridging classical electrodynamics and ultrafast optics for quantum control applications.
AB - We demonstrate a novel, to the best of our knowledge, mechanism for generating half-cycle unipolar light pulses through reflection of an intense single-cycle femtosecond laser pulse from a transient plasma layer. The leading pulse edge ionizes a thin medium layer, while the trailing edge reflects from the plasma boundary, producing subcycle unipolar waveforms. Our 1D Maxwell-plasma model reveals universal scaling laws for pulse shape versus plasma density and thickness, showing how thin layers yield isolated half-cycle pulses, while thicker layers produce rectangular waveforms. This all-optical approach enables attosecond field synthesis without complex phase-matching requirements, bridging classical electrodynamics and ultrafast optics for quantum control applications.
UR - https://www.mendeley.com/catalogue/aa49fcb9-6667-33a6-af45-967eb493879f/
U2 - 10.1364/ol.574342
DO - 10.1364/ol.574342
M3 - Article
VL - 50
SP - 6181
EP - 6184
JO - Optics Letters
JF - Optics Letters
SN - 0146-9592
IS - 19
ER -
ID: 142598751