Geometrically Induced Spectral Effects in Tubes with a Mixed Dirichlet—Neumann Boundary

Fedor L. Bakharev, Pavel Exner

Результат исследований: Научные публикации в периодических изданияхстатьярецензирование

1 Цитирования (Scopus)


We investigate spectral properties of the Laplacian in L2 (Q), where Q is a tubular region in ℝ3 of a fixed cross section, and the boundary conditions combined a Dirichlet and a Neumann part. We analyze two complementary situations, when the tube is bent but not twisted, and secondly, it is twisted but not bent. In the first case we derive sufficient conditions for the presence and absence of the discrete spectrum showing, roughly speaking, that they depend on the direction in which the tube is bent. In the second case we show that a constant twist raises the threshold of the essential spectrum and a local slowndown of it gives rise to isolated eigenvalues. Furthermore, we prove that the spectral threshold moves up also under a sufficiently gentle periodic twist.

Язык оригиналаанглийский
Страницы (с-по)213-231
Число страниц19
ЖурналReports on Mathematical Physics
Номер выпуска2
СостояниеОпубликовано - 1 апр 2018

Предметные области Scopus

  • Статистическая и нелинейная физика
  • Математическая физика

Fingerprint Подробные сведения о темах исследования «Geometrically Induced Spectral Effects in Tubes with a Mixed Dirichlet—Neumann Boundary». Вместе они формируют уникальный семантический отпечаток (fingerprint).