Lower Paleozoic black shales from Estonia, Sweden, and Russia were analyzed for major and trace elements to reconstruct the provenance, tectonic setting, and paleoweathering conditions of these shales. The black shale is highly enriched in U, V, Mo, and Pb (except in samples from Sweden where Pb is slightly enriched), slightly enriched in SiO2, Fe2O3, K2O, and TiO2 and highly
depleted in CaO, Na2O, and MnO, with respect to average shales. The provenance signatures (Th/Sc versus Zr/Sc, Al2O3 versus TiO2, Zr versus TiO2 plots, and Zr/Sc ratio) of the Baltoscandian black shales suggest that they were derived from rocks of intermediate to felsic composition and from
recycled sediments. The likely provenance region was the Paleoproterozoic igneous and metamorphic basement of southern central and southern Finland, which consists predominantly of felsic to intermediate metamorphic (acidic to intermediate gneisses, felsic volcanics, microcline granites and migmatites) and igneous rocks (small granitic intrusions and large rapakivi granite intrusions), and reworked older Ediacaran and Lower Cambrian sediments; however, the proportion of clastic input from these sources is not uniform in the three regions studied. The discrimination of the tectonic settings of source materials of the black shale using the SiO2 versus
K2O/Na2O plot and a new discriminant method (APMdisc) favors a passive margin setting. The Chemical Index of Weathering (CIW) indicates that the clastic material in the black shale of the studied regions has experienced an intense degree of chemical weathering. Weathering indices
(Chemical Index of Alteration CIA and CIW) also show that the black shale has experienced significant secondary potassium enrichment.