Аннотация
We consider Burgers particle systems, i.e., one-dimensional systems of sticky particles with discrete white-noise-type initial data (not necessarily Gaussian), and describe functional large deviations for the state of the systems at any given time. For specific functionals such as maximal particle mass, particle speed, rarefaction interval, momentum, and energy, the research was initiated by Avellaneda and E [1, 2] and pursued further by Ryan [14]. Our results extend those of Ryan and contain many other examples.
Язык оригинала | английский |
---|---|
Страницы (с-по) | 41-66 |
Число страниц | 26 |
Журнал | Communications on Pure and Applied Mathematics |
Том | 60 |
Номер выпуска | 1 |
DOI | |
Состояние | Опубликовано - 1 янв 2007 |
Предметные области Scopus
- Математика (все)
- Прикладная математика