Standard

Flexible Asymmetrically Transparent Conductive Metamaterial Electrode Based on Photonic Nanojet Arrays. / Kislov, D.A.; Voroshilov, P.; Kadochkin, A.; Veniaminov, A.; Zakharov, V.; Svetukhin, V.V.; Bobrovs, V.; Koval, O.; Komendo, I.; Azamov, A.M.; Bolshakov, A.; Dvoretckaia, L.; Mozharov, A.; Goltaev, A.; Gao, L.; Volkov, V.; Arsenin, A.; Ginzburg, P.; Mukhin, I.; Shalin, A.S.

в: Laser and Photonics Reviews, 26.10.2024.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Kislov, DA, Voroshilov, P, Kadochkin, A, Veniaminov, A, Zakharov, V, Svetukhin, VV, Bobrovs, V, Koval, O, Komendo, I, Azamov, AM, Bolshakov, A, Dvoretckaia, L, Mozharov, A, Goltaev, A, Gao, L, Volkov, V, Arsenin, A, Ginzburg, P, Mukhin, I & Shalin, AS 2024, 'Flexible Asymmetrically Transparent Conductive Metamaterial Electrode Based on Photonic Nanojet Arrays', Laser and Photonics Reviews. https://doi.org/10.1002/lpor.202400550

APA

Kislov, D. A., Voroshilov, P., Kadochkin, A., Veniaminov, A., Zakharov, V., Svetukhin, V. V., Bobrovs, V., Koval, O., Komendo, I., Azamov, A. M., Bolshakov, A., Dvoretckaia, L., Mozharov, A., Goltaev, A., Gao, L., Volkov, V., Arsenin, A., Ginzburg, P., Mukhin, I., & Shalin, A. S. (2024). Flexible Asymmetrically Transparent Conductive Metamaterial Electrode Based on Photonic Nanojet Arrays. Laser and Photonics Reviews. https://doi.org/10.1002/lpor.202400550

Vancouver

Kislov DA, Voroshilov P, Kadochkin A, Veniaminov A, Zakharov V, Svetukhin VV и пр. Flexible Asymmetrically Transparent Conductive Metamaterial Electrode Based on Photonic Nanojet Arrays. Laser and Photonics Reviews. 2024 Окт. 26. https://doi.org/10.1002/lpor.202400550

Author

Kislov, D.A. ; Voroshilov, P. ; Kadochkin, A. ; Veniaminov, A. ; Zakharov, V. ; Svetukhin, V.V. ; Bobrovs, V. ; Koval, O. ; Komendo, I. ; Azamov, A.M. ; Bolshakov, A. ; Dvoretckaia, L. ; Mozharov, A. ; Goltaev, A. ; Gao, L. ; Volkov, V. ; Arsenin, A. ; Ginzburg, P. ; Mukhin, I. ; Shalin, A.S. / Flexible Asymmetrically Transparent Conductive Metamaterial Electrode Based on Photonic Nanojet Arrays. в: Laser and Photonics Reviews. 2024.

BibTeX

@article{d6de90369134453c9d8d784a53d694b7,
title = "Flexible Asymmetrically Transparent Conductive Metamaterial Electrode Based on Photonic Nanojet Arrays",
abstract = "Flexible transparent electrodes, encompassing the combination of optical transparency and electrical conductivity, empower numerous optoelectronic applications. While the main efforts nowadays concentrate on developing wire meshes and conductive oxides, those technologies are still in a quest to find a balance between price, performance, and versatility. Here we propose a new platform, encompassing the advantages of nanophotonic design and roll-to-roll large-scale lithography fabrication tools, granting an ultimate balance between optical, electrical, and mechanical properties. The design is based on an array of silica microspheres deposited on a patterned thin aluminum film attached to a flexible polymer matrix. Microspheres are designed to squeeze 80% light through nanoscale apertures with the aid of the photonic nanojet effect given the light impinges the structure from the top. The photonic structure blocks the transmission for the backpropagation direction thus granting the device with the high 5-fold level of asymmetry. The patterned layer demonstrates a remarkable 2.8 Ω sq−1 sheet resistance comparable to that of a continuous metal layer. The high conductivity is shown to be maintained after a repeatable application of strain on the flexible electrode. Such remarkable optical, mechanical and electrical properties, makes the demonstrated device an essential component for applications, where such attributes are critically required. {\textcopyright} 2024 The Author(s). Laser & Photonics Reviews published by Wiley-VCH GmbH.",
keywords = "asymmetry, flexible transparent electrode, patterned thin metal film, photonic nanojet, silica microsphere, Coated wire electrodes, Hydroelasticity, Laser beams, Nanocomposite thin films, Optical conductivity, Optical depth, Photonic devices, Transparent electrodes, Asymmetry, Flexible transparent electrode, Optical transparency, Optical-, Patterned thin metal film, Photonic nanojets, Silica microspheres, Thin metal films, Transparent conductive, Transparent electrode, Microspheres",
author = "D.A. Kislov and P. Voroshilov and A. Kadochkin and A. Veniaminov and V. Zakharov and V.V. Svetukhin and V. Bobrovs and O. Koval and I. Komendo and A.M. Azamov and A. Bolshakov and L. Dvoretckaia and A. Mozharov and A. Goltaev and L. Gao and V. Volkov and A. Arsenin and P. Ginzburg and I. Mukhin and A.S. Shalin",
note = "Export Date: 10 November 2024 Сведения о финансировании: Ministry of Education and Science of the Russian Federation, Minobrnauka, 075‐15‐2022‐1150 Сведения о финансировании: Ministry of Education and Science of the Russian Federation, Minobrnauka Сведения о финансировании: Russian Science Foundation, RSF, 23‐72‐00037 Сведения о финансировании: Russian Science Foundation, RSF Сведения о финансировании: Latvijas Zinātnes Padome, lzp‐2021/1‐0048 Сведения о финансировании: Latvijas Zinātnes Padome Текст о финансировании 1: Ministry of Science and Higher Education of the Russian Federation (Agreement No. 075\u201015\u20102022\u20101150); The calculations of the optical transmittance are partially supported by the Russian Science Foundation grant No. 23\u201072\u201000037. A.G. thanks the Russian Federation (Agreement No. 21\u201079\u201010202) for sample fabrication. P.G. acknowledges Science Forefront (Israel), project 0006764. V.B. acknowledges Latvian Council of Science, project \u201CDNSSN\u201D (project No. lzp\u20102021/1\u20100048). The project started in 2019, there is no joint funding between the teams.",
year = "2024",
month = oct,
day = "26",
doi = "10.1002/lpor.202400550",
language = "Английский",
journal = "Laser and Photonics Reviews",
issn = "1863-8880",
publisher = "Wiley-Blackwell",

}

RIS

TY - JOUR

T1 - Flexible Asymmetrically Transparent Conductive Metamaterial Electrode Based on Photonic Nanojet Arrays

AU - Kislov, D.A.

AU - Voroshilov, P.

AU - Kadochkin, A.

AU - Veniaminov, A.

AU - Zakharov, V.

AU - Svetukhin, V.V.

AU - Bobrovs, V.

AU - Koval, O.

AU - Komendo, I.

AU - Azamov, A.M.

AU - Bolshakov, A.

AU - Dvoretckaia, L.

AU - Mozharov, A.

AU - Goltaev, A.

AU - Gao, L.

AU - Volkov, V.

AU - Arsenin, A.

AU - Ginzburg, P.

AU - Mukhin, I.

AU - Shalin, A.S.

N1 - Export Date: 10 November 2024 Сведения о финансировании: Ministry of Education and Science of the Russian Federation, Minobrnauka, 075‐15‐2022‐1150 Сведения о финансировании: Ministry of Education and Science of the Russian Federation, Minobrnauka Сведения о финансировании: Russian Science Foundation, RSF, 23‐72‐00037 Сведения о финансировании: Russian Science Foundation, RSF Сведения о финансировании: Latvijas Zinātnes Padome, lzp‐2021/1‐0048 Сведения о финансировании: Latvijas Zinātnes Padome Текст о финансировании 1: Ministry of Science and Higher Education of the Russian Federation (Agreement No. 075\u201015\u20102022\u20101150); The calculations of the optical transmittance are partially supported by the Russian Science Foundation grant No. 23\u201072\u201000037. A.G. thanks the Russian Federation (Agreement No. 21\u201079\u201010202) for sample fabrication. P.G. acknowledges Science Forefront (Israel), project 0006764. V.B. acknowledges Latvian Council of Science, project \u201CDNSSN\u201D (project No. lzp\u20102021/1\u20100048). The project started in 2019, there is no joint funding between the teams.

PY - 2024/10/26

Y1 - 2024/10/26

N2 - Flexible transparent electrodes, encompassing the combination of optical transparency and electrical conductivity, empower numerous optoelectronic applications. While the main efforts nowadays concentrate on developing wire meshes and conductive oxides, those technologies are still in a quest to find a balance between price, performance, and versatility. Here we propose a new platform, encompassing the advantages of nanophotonic design and roll-to-roll large-scale lithography fabrication tools, granting an ultimate balance between optical, electrical, and mechanical properties. The design is based on an array of silica microspheres deposited on a patterned thin aluminum film attached to a flexible polymer matrix. Microspheres are designed to squeeze 80% light through nanoscale apertures with the aid of the photonic nanojet effect given the light impinges the structure from the top. The photonic structure blocks the transmission for the backpropagation direction thus granting the device with the high 5-fold level of asymmetry. The patterned layer demonstrates a remarkable 2.8 Ω sq−1 sheet resistance comparable to that of a continuous metal layer. The high conductivity is shown to be maintained after a repeatable application of strain on the flexible electrode. Such remarkable optical, mechanical and electrical properties, makes the demonstrated device an essential component for applications, where such attributes are critically required. © 2024 The Author(s). Laser & Photonics Reviews published by Wiley-VCH GmbH.

AB - Flexible transparent electrodes, encompassing the combination of optical transparency and electrical conductivity, empower numerous optoelectronic applications. While the main efforts nowadays concentrate on developing wire meshes and conductive oxides, those technologies are still in a quest to find a balance between price, performance, and versatility. Here we propose a new platform, encompassing the advantages of nanophotonic design and roll-to-roll large-scale lithography fabrication tools, granting an ultimate balance between optical, electrical, and mechanical properties. The design is based on an array of silica microspheres deposited on a patterned thin aluminum film attached to a flexible polymer matrix. Microspheres are designed to squeeze 80% light through nanoscale apertures with the aid of the photonic nanojet effect given the light impinges the structure from the top. The photonic structure blocks the transmission for the backpropagation direction thus granting the device with the high 5-fold level of asymmetry. The patterned layer demonstrates a remarkable 2.8 Ω sq−1 sheet resistance comparable to that of a continuous metal layer. The high conductivity is shown to be maintained after a repeatable application of strain on the flexible electrode. Such remarkable optical, mechanical and electrical properties, makes the demonstrated device an essential component for applications, where such attributes are critically required. © 2024 The Author(s). Laser & Photonics Reviews published by Wiley-VCH GmbH.

KW - asymmetry

KW - flexible transparent electrode

KW - patterned thin metal film

KW - photonic nanojet

KW - silica microsphere

KW - Coated wire electrodes

KW - Hydroelasticity

KW - Laser beams

KW - Nanocomposite thin films

KW - Optical conductivity

KW - Optical depth

KW - Photonic devices

KW - Transparent electrodes

KW - Asymmetry

KW - Flexible transparent electrode

KW - Optical transparency

KW - Optical-

KW - Patterned thin metal film

KW - Photonic nanojets

KW - Silica microspheres

KW - Thin metal films

KW - Transparent conductive

KW - Transparent electrode

KW - Microspheres

UR - https://www.mendeley.com/catalogue/d149a71a-0360-30cd-bcb9-5ba79e55aaa3/

U2 - 10.1002/lpor.202400550

DO - 10.1002/lpor.202400550

M3 - статья

JO - Laser and Photonics Reviews

JF - Laser and Photonics Reviews

SN - 1863-8880

ER -

ID: 127215381