Extremal Polynomials Connected with Zolotarev Polynomials

I. V. Agafonova, V. N. Malozemov

Результат исследований: Научные публикации в периодических изданияхстатья


Abstract: Let two points a and b located to the right and left of the interval [–1, 1], respectively, be given on the real axis. The extremal problem is stated as follows: find an algebraic polynomial of the n-th degree, whose value is A at point a, it does not exceed M in absolute value in the interval [–1, 1], and takes the largest possible value at point b. This problem is connected with the second Zolotarev problem. A set of values of the parameter A, for which this problem has a unique solution, is indicated in this paper and an alternance characteristic of this solution is given. The behavior of the solution with respect to the parameter A is studied. It is found that the solution can be obtained for certain A using the Chebyshev polynomial, and can be obtained for all other admissible A with the help of the Zolotarev polynomial.

Язык оригиналаанглийский
Страницы (с-по)1-9
Число страниц9
ЖурналVestnik St. Petersburg University: Mathematics
Номер выпуска1
СостояниеОпубликовано - 26 мар 2020

Предметные области Scopus

  • Математика (все)

Fingerprint Подробные сведения о темах исследования «Extremal Polynomials Connected with Zolotarev Polynomials». Вместе они формируют уникальный семантический отпечаток (fingerprint).