We study properties of nonlinear supersymmetry algebras realized in the one-dimensional quantum mechanics of matrix systems. Supercharges of these algebras are differential operators of a finite order in derivatives. In special cases, there exist independent supercharges realizing an (extended) supersymmetry of the same super-Hamiltonian. The extended supersymmetry generates hidden symmetries of the super-Hamiltonian. Such symmetries have been found in models with (2×2)-matrix potentials.
Язык оригиналаанглийский
Страницы (с-по)2-20
ЖурналTheoretical and Mathematical Physics
Том186
Номер выпуска1
DOI
СостояниеОпубликовано - 2016

ID: 7549312