Estimation for number of almost periodic solutions of first-order ordinary differential equations

Gennady Alferov, Gennady Ivanov, Artem Sharlay, Viktor Fedorov

Результат исследований: Публикации в книгах, отчётах, сборниках, трудах конференцийстатья в сборнике материалов конференции

Выдержка

Approaches to estimating for the number of almost periodic solutions of ordinary differential equations are considered. Conditions that allow determinating both the upper and lower bounds for these solutions are found. The existence and stability of almost periodic problems are considered.

Язык оригиналаанглийский
Название основной публикацииInternational Conference on Numerical Analysis and Applied Mathematics, ICNAAM 2018
РедакторыT.E. Simos, T.E. Simos, T.E. Simos, T.E. Simos, Ch. Tsitouras, T.E. Simos
ИздательAmerican Institute of Physics
ISBN (печатное издание)9780735418547
DOI
СостояниеОпубликовано - 24 июл 2019
СобытиеInternational Conference on Numerical Analysis and Applied Mathematics 2018, ICNAAM 2018 - Rhodes, Греция
Продолжительность: 13 сен 201818 сен 2018

Серия публикаций

НазваниеAIP Conference Proceedings
Том2116
ISSN (печатное издание)0094-243X
ISSN (электронное издание)1551-7616

Конференция

КонференцияInternational Conference on Numerical Analysis and Applied Mathematics 2018, ICNAAM 2018
СтранаГреция
ГородRhodes
Период13/09/1818/09/18

Отпечаток

estimating
differential equations

Предметные области Scopus

  • Экология, эволюция поведение и систематика
  • Экология
  • Прикладная ботаника
  • Физика и астрономия (все)
  • Природа и охрана ландшафта

Цитировать

Alferov, G., Ivanov, G., Sharlay, A., & Fedorov, V. (2019). Estimation for number of almost periodic solutions of first-order ordinary differential equations. В T. E. Simos, T. E. Simos, T. E. Simos, T. E. Simos, C. Tsitouras, & T. E. Simos (Ред.), International Conference on Numerical Analysis and Applied Mathematics, ICNAAM 2018 [080004] (AIP Conference Proceedings; Том 2116). American Institute of Physics. https://doi.org/10.1063/1.5114064
Alferov, Gennady ; Ivanov, Gennady ; Sharlay, Artem ; Fedorov, Viktor. / Estimation for number of almost periodic solutions of first-order ordinary differential equations. International Conference on Numerical Analysis and Applied Mathematics, ICNAAM 2018. редактор / T.E. Simos ; T.E. Simos ; T.E. Simos ; T.E. Simos ; Ch. Tsitouras ; T.E. Simos. American Institute of Physics, 2019. (AIP Conference Proceedings).
@inproceedings{c169578bdffe4e2ea31c7db47ce6aa65,
title = "Estimation for number of almost periodic solutions of first-order ordinary differential equations",
abstract = "Approaches to estimating for the number of almost periodic solutions of ordinary differential equations are considered. Conditions that allow determinating both the upper and lower bounds for these solutions are found. The existence and stability of almost periodic problems are considered.",
author = "Gennady Alferov and Gennady Ivanov and Artem Sharlay and Viktor Fedorov",
year = "2019",
month = "7",
day = "24",
doi = "10.1063/1.5114064",
language = "English",
isbn = "9780735418547",
series = "AIP Conference Proceedings",
publisher = "American Institute of Physics",
editor = "T.E. Simos and T.E. Simos and T.E. Simos and T.E. Simos and Ch. Tsitouras and T.E. Simos",
booktitle = "International Conference on Numerical Analysis and Applied Mathematics, ICNAAM 2018",
address = "United States",

}

Alferov, G, Ivanov, G, Sharlay, A & Fedorov, V 2019, Estimation for number of almost periodic solutions of first-order ordinary differential equations. в TE Simos, TE Simos, TE Simos, TE Simos, C Tsitouras & TE Simos (ред.), International Conference on Numerical Analysis and Applied Mathematics, ICNAAM 2018., 080004, AIP Conference Proceedings, том. 2116, American Institute of Physics, Rhodes, Греция, 13/09/18. https://doi.org/10.1063/1.5114064

Estimation for number of almost periodic solutions of first-order ordinary differential equations. / Alferov, Gennady; Ivanov, Gennady; Sharlay, Artem; Fedorov, Viktor.

International Conference on Numerical Analysis and Applied Mathematics, ICNAAM 2018. ред. / T.E. Simos; T.E. Simos; T.E. Simos; T.E. Simos; Ch. Tsitouras; T.E. Simos. American Institute of Physics, 2019. 080004 (AIP Conference Proceedings; Том 2116).

Результат исследований: Публикации в книгах, отчётах, сборниках, трудах конференцийстатья в сборнике материалов конференции

TY - GEN

T1 - Estimation for number of almost periodic solutions of first-order ordinary differential equations

AU - Alferov, Gennady

AU - Ivanov, Gennady

AU - Sharlay, Artem

AU - Fedorov, Viktor

PY - 2019/7/24

Y1 - 2019/7/24

N2 - Approaches to estimating for the number of almost periodic solutions of ordinary differential equations are considered. Conditions that allow determinating both the upper and lower bounds for these solutions are found. The existence and stability of almost periodic problems are considered.

AB - Approaches to estimating for the number of almost periodic solutions of ordinary differential equations are considered. Conditions that allow determinating both the upper and lower bounds for these solutions are found. The existence and stability of almost periodic problems are considered.

UR - http://www.scopus.com/inward/record.url?scp=85069965189&partnerID=8YFLogxK

UR - http://www.mendeley.com/research/estimation-number-almost-periodic-solutions-firstorder-ordinary-differential-equations

U2 - 10.1063/1.5114064

DO - 10.1063/1.5114064

M3 - Conference contribution

AN - SCOPUS:85069965189

SN - 9780735418547

T3 - AIP Conference Proceedings

BT - International Conference on Numerical Analysis and Applied Mathematics, ICNAAM 2018

A2 - Simos, T.E.

A2 - Simos, T.E.

A2 - Simos, T.E.

A2 - Simos, T.E.

A2 - Tsitouras, Ch.

A2 - Simos, T.E.

PB - American Institute of Physics

ER -

Alferov G, Ivanov G, Sharlay A, Fedorov V. Estimation for number of almost periodic solutions of first-order ordinary differential equations. В Simos TE, Simos TE, Simos TE, Simos TE, Tsitouras C, Simos TE, редакторы, International Conference on Numerical Analysis and Applied Mathematics, ICNAAM 2018. American Institute of Physics. 2019. 080004. (AIP Conference Proceedings). https://doi.org/10.1063/1.5114064