Employees’ Social Graph Analysis: A Model of Detection the Most Criticality Trajectories of the Social Engineering Attack’s Spread

Результат исследований: Публикации в книгах, отчётах, сборниках, трудах конференцийстатья в сборнике материалов конференциинаучнаярецензирование

Аннотация

In this research we present the hybrid model of finding the most critical distribution trajectories of multipath Social engineering attacks, passing through which by the malefactor on a global basis has the topmost degree of probability and will bring the greatest loss to the company. The solution of search problem concerning the most critical trajectories rests upon the assumption that the estimated probabilities of the direct Social engineering attack on user, degree evaluation of documents’ criticality, the estimated probabilities of Social engineering attack’s distribution from user to user are premised on linguistic indistinct variables are already calculated. The described model finds its application at creation when constructing the estimates of information systems users’ safety against Social engineering attacks and promotes well-timed informing of decision-makers on the vulnerabilities which being available in system.

Язык оригиналаанглийский
Название основной публикацииProceedings of the 4th International Scientific Conference on Intelligent Information Technologies for Industry, IITI 2019
РедакторыSergey Kovalev, Andrey Sukhanov, Valery Tarassov, Vaclav Snasel
ИздательSpringer Nature
Страницы198-205
Число страниц8
ISBN (печатное издание)9783030500962
DOI
СостояниеОпубликовано - 1 янв 2020
Событие4th International Scientific Conference on Intelligent Information Technologies for Industry, IITI 2019 - Ostrava-Prague, Чехия
Продолжительность: 2 дек 20197 дек 2019

Серия публикаций

НазваниеAdvances in Intelligent Systems and Computing
Том1156 AISC
ISSN (печатное издание)2194-5357
ISSN (электронное издание)2194-5365

конференция

конференция4th International Scientific Conference on Intelligent Information Technologies for Industry, IITI 2019
СтранаЧехия
ГородOstrava-Prague
Период2/12/197/12/19

Предметные области Scopus

  • Системотехника
  • Компьютерные науки (все)

Fingerprint Подробные сведения о темах исследования «Employees’ Social Graph Analysis: A Model of Detection the Most Criticality Trajectories of the Social Engineering Attack’s Spread». Вместе они формируют уникальный семантический отпечаток (fingerprint).

Цитировать