Eigenvalue asymptotics of long Kirchhoff plates with clamped edges

Результат исследований: Научные публикации в периодических изданияхстатьярецензирование

Аннотация

Asymptotic expansions are constructed for the eigenvalues and eigenfunctions of the Dirichlet problem for the biharmonic operator in thin domains (Kirchhoff plates with clamped edges). For a rectangular plate the leading terms are asymptotically determined from the Dirichlet problem for a second-order ordinary differential equation, while for a T-junction of plates they are determined from another limiting problem in an infinite waveguide formed by three half-strips in the shape of a letter T and describing a boundary-layer phenomenon. Open questions are stated for which the method developed gives no answer.

Язык оригиналаанглийский
Страницы (с-по)473-494
ЖурналSbornik Mathematics
Том210
Номер выпуска4
DOI
СостояниеОпубликовано - 2019

Предметные области Scopus

  • Алгебра и теория чисел

Fingerprint Подробные сведения о темах исследования «Eigenvalue asymptotics of long Kirchhoff plates with clamped edges». Вместе они формируют уникальный семантический отпечаток (fingerprint).

Цитировать