Аннотация
In stochastic games, the player’s payoff is a stochastic variable. In most papers, expected payoff is considered as a payoff, which means the risk neutrality of the players. However, there may exist risk-sensitive players who would take into account “risk” measuring their stochastic payoffs. In the paper, we propose a model of stochastic games with mean-variance payoff functions, which is the sum of expectation and standard deviation multiplied by a coefficient characterizing a player’s attention to risk. We construct a cooperative version of a stochastic game with mean-variance preferences by defining characteristic function using a maxmin approach. The imputation in a cooperative stochastic game with mean-variance preferences is supposed to be a random vector. We construct the core of a cooperative stochastic game with mean-variance preferences. The paper extends existing models of discrete-time stochastic games and approaches to find cooperative solutions in these games.
Язык оригинала | английский |
---|---|
Номер статьи | 230 |
Страницы (с-по) | 1-15 |
Число страниц | 15 |
Журнал | Mathematics |
Том | 9 |
Номер выпуска | 3 |
DOI | |
Состояние | Опубликовано - 1 фев 2021 |
Предметные области Scopus
- Математика (все)