Cooperative stochastic games with mean-variance preferences

Elena Parilina, Stepan Akimochkin

Результат исследований: Научные публикации в периодических изданияхстатья

Аннотация

In stochastic games, the player’s payoff is a stochastic variable. In most papers, expected payoff is considered as a payoff, which means the risk neutrality of the players. However, there may exist risk-sensitive players who would take into account “risk” measuring their stochastic payoffs. In the paper, we propose a model of stochastic games with mean-variance payoff functions, which is the sum of expectation and standard deviation multiplied by a coefficient characterizing a player’s attention to risk. We construct a cooperative version of a stochastic game with mean-variance preferences by defining characteristic function using a maxmin approach. The imputation in a cooperative stochastic game with mean-variance preferences is supposed to be a random vector. We construct the core of a cooperative stochastic game with mean-variance preferences. The paper extends existing models of discrete-time stochastic games and approaches to find cooperative solutions in these games.

Язык оригиналаанглийский
Номер статьи230
Страницы (с-по)1-15
Число страниц15
ЖурналMathematics
Том9
Номер выпуска3
DOI
СостояниеОпубликовано - 1 фев 2021

Предметные области Scopus

  • Математика (все)

Fingerprint Подробные сведения о темах исследования «Cooperative stochastic games with mean-variance preferences». Вместе они формируют уникальный семантический отпечаток (fingerprint).

Цитировать