Control subspaces of minimal dimension. Elementary introduction. Discotheca

V. I. Vasyunin, N. K. Nikol'skii

Результат исследований: Научные публикации в периодических изданияхстатья

2 Цитирования (Scopus)


In this paper there is introduced and studied the following characteristic of a linear operator A acting on a Banach space Χ:[Figure not available: see fulltext.], where Cyc A=R:R is a subspace of Χ, dim R<+∞. Spqn (AnR:n≥0)=χ. Always disc A ≥μA=(the multiplicity of the spectrum of the operator[Figure not available: see fulltext.] (dim R:R∈Cyc A), where (by definition) in each A-cyclic subspace there is contained a cyclic subspace of dimension ≤ disc A. For a linear dynamical system x(t)=Ax(t)+Bu,(t) which is controllable, the characteristic disc A of the evolution operator A shows how much the control space can be diminished without losing controllability. In this paper there are established some general properties of disc (for example, conditions are given under which disc(A⊕B))=max(discA, disc B); disc is computed for the following operators: S (S is the shift in the Hardy space H2); disc S=2, (but μS=i); disc Sn*=n (but μ=1), where Sn=S⊕. ⊕S; disc S=2, (but μS=1), where S is the bilateral shift. It is proved that for a normal operator N with simple spectrum, disc N=μN=1 {mapping} (the operator N is reductive). There are other results also, and also a list of unsolved problems.

Язык оригиналаанглийский
Страницы (с-по)1719-1738
Число страниц20
ЖурналJournal of Soviet Mathematics
Номер выпуска6
СостояниеОпубликовано - 1 авг 1983

Предметные области Scopus

  • Теория вероятности и статистика
  • Математика (все)
  • Прикладная математика

Fingerprint Подробные сведения о темах исследования «Control subspaces of minimal dimension. Elementary introduction. Discotheca». Вместе они формируют уникальный семантический отпечаток (fingerprint).