Construction of non-polynomial splines of the first level with fourth order of approximation

Результат исследований: Публикации в книгах, отчётах, сборниках, трудах конференцийстатья в сборнике материалов конференциинаучнаярецензирование

Аннотация

Interpolation using Hermite polynomial cubic splines is well known and often used. Here we propose an approximation with the non-polynomial splines with the fourth order of approximation. The splines uses the values of the function and the first derivative of the function in the nodes. We call the approximation as first level approximation because it uses the first derivative of the function. This approximation has the properties of polynomial and trigonometric functions. Here we also have constructed a non-polynomial interpolating spline which has continuous the first and second derivative. This approximation uses the values of the function at the nodes and the values of the first derivative of the function at the ends of the interval [a, b]. Estimates of the approximations are given and the constants included in them are calculated. Numerical examples are given.

Язык оригиналаанглийский
Название основной публикацииInternational Conference on Numerical Analysis and Applied Mathematics, ICNAAM 2019
РедакторыTheodore E. Simos, Theodore E. Simos, Theodore E. Simos, Theodore E. Simos, Theodore E. Simos, Charalambos Tsitouras
ИздательAmerican Institute of Physics
ISBN (электронное издание)9780735440258
DOI
СостояниеОпубликовано - 24 ноя 2020
СобытиеInternational Conference on Numerical Analysis and Applied Mathematics 2019, ICNAAM 2019 - Rhodes, Греция
Продолжительность: 23 сен 201928 сен 2019

Серия публикаций

НазваниеAIP Conference Proceedings
Том2293
ISSN (печатное издание)0094-243X
ISSN (электронное издание)1551-7616

конференция

конференцияInternational Conference on Numerical Analysis and Applied Mathematics 2019, ICNAAM 2019
СтранаГреция
ГородRhodes
Период23/09/1928/09/19

Предметные области Scopus

  • Физика и астрономия (все)

Fingerprint Подробные сведения о темах исследования «Construction of non-polynomial splines of the first level with fourth order of approximation». Вместе они формируют уникальный семантический отпечаток (fingerprint).

Цитировать