Combined Electromagnetic Suspensions with Reduced Energy Consumption for Levitation Vehicles

E.N. Andreev, D.N. Arslanova, E.V. Akhmetzyanova, A.M. Bazarov, V.N. Vasil’ev, O. S. Vasil’eva, M.S. Verkhoturov, E.I. Gapionok, A.A. Demina, S.V. Zavadskii, M.Yu. Zenkevich, M.V. Kaparkova, V.D. Kuz’menkov, A.N. Labusov, M.S. Larionov, M.V. Manzuk, A.V. Mizintsev, A.N. Nezhentsev, D.A. Ovsyannikov, A.D. Ovsyannikov & 1 другие M.V. Khokhlov

Результат исследований: Научные публикации в периодических изданияхстатьянаучнаярецензирование

Выдержка

At present, the development of magnetic levitation transportation is conducted based on electromagnetic and electrodynamic suspensions the technical and commercial implementation of which has been successfully demonstrated in Korea, China, Japan, and other countries. Sources of an electromagnetic field in suspensions can be normally conducting electromagnets, superconducting magnets and high-coercive permanent magnets. The progress made in the development of new magnetic materials (permanent magnets and high-temperature superconductors) opens up prospects for reducing the energy consumption of levitation transport systems. The authors proposed magnets of all three types, which together ensure the functioning of combined electromagnetic suspension, and created scale models of such magnets. The permanent levitation of suspension models with a load is provided. The correctness of technical solutions is confirmed, software created in the Russian Federation allows one to reliably-scale magnetic systems of suspensions. Thus, all the prerequisites have been completed for the next stage of creating full-scale prototypes of effective levitation systems, in particular, a 50-ton cargo platform.

Язык оригиналаанглийский
Страницы (с-по)1060-1065
ЖурналTechnical Physics
Том64
Номер выпуска7
DOI
СостояниеОпубликовано - 1 июл 2019

Отпечаток

levitation
energy consumption
vehicles
electromagnetism
permanent magnets
magnets
electromagnets
cargo
Korea
scale models
superconducting magnets
Russian Federation
magnetic materials
electrodynamics
high temperature superconductors
China
Japan
electromagnetic fields
platforms
prototypes

Предметные области Scopus

  • Физика и астрономия (разное)

Цитировать

Andreev, E. N., Arslanova, D. N., Akhmetzyanova, E. V., Bazarov, A. M., Vasil’ev, V. N., Vasil’eva, O. S., ... Khokhlov, M. V. (2019). Combined Electromagnetic Suspensions with Reduced Energy Consumption for Levitation Vehicles. Technical Physics, 64(7), 1060-1065. https://doi.org/10.1134/S1063784219070041
Andreev, E.N. ; Arslanova, D.N. ; Akhmetzyanova, E.V. ; Bazarov, A.M. ; Vasil’ev, V.N. ; Vasil’eva, O. S. ; Verkhoturov, M.S. ; Gapionok, E.I. ; Demina, A.A. ; Zavadskii, S.V. ; Zenkevich, M.Yu. ; Kaparkova, M.V. ; Kuz’menkov, V.D. ; Labusov, A.N. ; Larionov, M.S. ; Manzuk, M.V. ; Mizintsev, A.V. ; Nezhentsev, A.N. ; Ovsyannikov, D.A. ; Ovsyannikov, A.D. ; Khokhlov, M.V. / Combined Electromagnetic Suspensions with Reduced Energy Consumption for Levitation Vehicles. В: Technical Physics. 2019 ; Том 64, № 7. стр. 1060-1065.
@article{f2e9afb3117b40d0955514a6c12f518c,
title = "Combined Electromagnetic Suspensions with Reduced Energy Consumption for Levitation Vehicles",
abstract = "At present, the development of magnetic levitation transportation is conducted based on electromagnetic and electrodynamic suspensions the technical and commercial implementation of which has been successfully demonstrated in Korea, China, Japan, and other countries. Sources of an electromagnetic field in suspensions can be normally conducting electromagnets, superconducting magnets and high-coercive permanent magnets. The progress made in the development of new magnetic materials (permanent magnets and high-temperature superconductors) opens up prospects for reducing the energy consumption of levitation transport systems. The authors proposed magnets of all three types, which together ensure the functioning of combined electromagnetic suspension, and created scale models of such magnets. The permanent levitation of suspension models with a load is provided. The correctness of technical solutions is confirmed, software created in the Russian Federation allows one to reliably-scale magnetic systems of suspensions. Thus, all the prerequisites have been completed for the next stage of creating full-scale prototypes of effective levitation systems, in particular, a 50-ton cargo platform.",
author = "E.N. Andreev and D.N. Arslanova and E.V. Akhmetzyanova and A.M. Bazarov and V.N. Vasil’ev and Vasil’eva, {O. S.} and M.S. Verkhoturov and E.I. Gapionok and A.A. Demina and S.V. Zavadskii and M.Yu. Zenkevich and M.V. Kaparkova and V.D. Kuz’menkov and A.N. Labusov and M.S. Larionov and M.V. Manzuk and A.V. Mizintsev and A.N. Nezhentsev and D.A. Ovsyannikov and A.D. Ovsyannikov and M.V. Khokhlov",
year = "2019",
month = "7",
day = "1",
doi = "10.1134/S1063784219070041",
language = "English",
volume = "64",
pages = "1060--1065",
journal = "Technical Physics",
issn = "1063-7842",
publisher = "Pleiades Publishing",
number = "7",

}

Andreev, EN, Arslanova, DN, Akhmetzyanova, EV, Bazarov, AM, Vasil’ev, VN, Vasil’eva, OS, Verkhoturov, MS, Gapionok, EI, Demina, AA, Zavadskii, SV, Zenkevich, MY, Kaparkova, MV, Kuz’menkov, VD, Labusov, AN, Larionov, MS, Manzuk, MV, Mizintsev, AV, Nezhentsev, AN, Ovsyannikov, DA, Ovsyannikov, AD & Khokhlov, MV 2019, 'Combined Electromagnetic Suspensions with Reduced Energy Consumption for Levitation Vehicles', Technical Physics, том. 64, № 7, стр. 1060-1065. https://doi.org/10.1134/S1063784219070041

Combined Electromagnetic Suspensions with Reduced Energy Consumption for Levitation Vehicles. / Andreev, E.N.; Arslanova, D.N.; Akhmetzyanova, E.V.; Bazarov, A.M.; Vasil’ev, V.N.; Vasil’eva, O. S.; Verkhoturov, M.S.; Gapionok, E.I.; Demina, A.A.; Zavadskii, S.V.; Zenkevich, M.Yu.; Kaparkova, M.V.; Kuz’menkov, V.D.; Labusov, A.N.; Larionov, M.S.; Manzuk, M.V.; Mizintsev, A.V.; Nezhentsev, A.N.; Ovsyannikov, D.A.; Ovsyannikov, A.D.; Khokhlov, M.V.

В: Technical Physics, Том 64, № 7, 01.07.2019, стр. 1060-1065.

Результат исследований: Научные публикации в периодических изданияхстатьянаучнаярецензирование

TY - JOUR

T1 - Combined Electromagnetic Suspensions with Reduced Energy Consumption for Levitation Vehicles

AU - Andreev, E.N.

AU - Arslanova, D.N.

AU - Akhmetzyanova, E.V.

AU - Bazarov, A.M.

AU - Vasil’ev, V.N.

AU - Vasil’eva, O. S.

AU - Verkhoturov, M.S.

AU - Gapionok, E.I.

AU - Demina, A.A.

AU - Zavadskii, S.V.

AU - Zenkevich, M.Yu.

AU - Kaparkova, M.V.

AU - Kuz’menkov, V.D.

AU - Labusov, A.N.

AU - Larionov, M.S.

AU - Manzuk, M.V.

AU - Mizintsev, A.V.

AU - Nezhentsev, A.N.

AU - Ovsyannikov, D.A.

AU - Ovsyannikov, A.D.

AU - Khokhlov, M.V.

PY - 2019/7/1

Y1 - 2019/7/1

N2 - At present, the development of magnetic levitation transportation is conducted based on electromagnetic and electrodynamic suspensions the technical and commercial implementation of which has been successfully demonstrated in Korea, China, Japan, and other countries. Sources of an electromagnetic field in suspensions can be normally conducting electromagnets, superconducting magnets and high-coercive permanent magnets. The progress made in the development of new magnetic materials (permanent magnets and high-temperature superconductors) opens up prospects for reducing the energy consumption of levitation transport systems. The authors proposed magnets of all three types, which together ensure the functioning of combined electromagnetic suspension, and created scale models of such magnets. The permanent levitation of suspension models with a load is provided. The correctness of technical solutions is confirmed, software created in the Russian Federation allows one to reliably-scale magnetic systems of suspensions. Thus, all the prerequisites have been completed for the next stage of creating full-scale prototypes of effective levitation systems, in particular, a 50-ton cargo platform.

AB - At present, the development of magnetic levitation transportation is conducted based on electromagnetic and electrodynamic suspensions the technical and commercial implementation of which has been successfully demonstrated in Korea, China, Japan, and other countries. Sources of an electromagnetic field in suspensions can be normally conducting electromagnets, superconducting magnets and high-coercive permanent magnets. The progress made in the development of new magnetic materials (permanent magnets and high-temperature superconductors) opens up prospects for reducing the energy consumption of levitation transport systems. The authors proposed magnets of all three types, which together ensure the functioning of combined electromagnetic suspension, and created scale models of such magnets. The permanent levitation of suspension models with a load is provided. The correctness of technical solutions is confirmed, software created in the Russian Federation allows one to reliably-scale magnetic systems of suspensions. Thus, all the prerequisites have been completed for the next stage of creating full-scale prototypes of effective levitation systems, in particular, a 50-ton cargo platform.

UR - http://www.scopus.com/inward/record.url?scp=85070208015&partnerID=8YFLogxK

U2 - 10.1134/S1063784219070041

DO - 10.1134/S1063784219070041

M3 - Article

VL - 64

SP - 1060

EP - 1065

JO - Technical Physics

JF - Technical Physics

SN - 1063-7842

IS - 7

ER -

Andreev EN, Arslanova DN, Akhmetzyanova EV, Bazarov AM, Vasil’ev VN, Vasil’eva OS и соавт. Combined Electromagnetic Suspensions with Reduced Energy Consumption for Levitation Vehicles. Technical Physics. 2019 Июль 1;64(7):1060-1065. https://doi.org/10.1134/S1063784219070041