Characteristic functions in a linear oligopoly TU game

Результат исследований: Публикации в книгах, отчётах, сборниках, трудах конференцийглава/раздел

Выдержка

We consider a linear oligopoly TU game without transferable technologies in which the characteristic function is determined from different perspectives. In so-called γ-, δ-, and ζ-games, we study the properties of characteristic functions such as monotonicity, superadditivity, and supermodularity. We also show that these games have nonempty cores of a nested structure when the δ-characteristic function is supermodular.

Язык оригиналаанглийский
Название основной публикацииStatic and Dynamic Game Theory
Подзаголовок основной публикацииFoundations and Applications
ИздательBirkhäuser Verlag AG
Страницы219-235
Число страниц17
DOI
СостояниеОпубликовано - 1 янв 2018

Серия публикаций

НазваниеStatic and Dynamic Game Theory: Foundations and Applications
ISSN (печатное издание)2363-8516
ISSN (электронное издание)2363-8524

Отпечаток

TU Game
Oligopoly
Characteristic Function
Supermodularity
Superadditivity
Game
Monotonicity
Characteristic function
TU game

Предметные области Scopus

  • Статистика, теория вероятности и теория неопределенности
  • Теория вероятности и статистика
  • Прикладная математика

Цитировать

Sedakov, A. (2018). Characteristic functions in a linear oligopoly TU game. В Static and Dynamic Game Theory: Foundations and Applications (стр. 219-235). (Static and Dynamic Game Theory: Foundations and Applications). Birkhäuser Verlag AG. https://doi.org/10.1007/978-3-319-92988-0_13
Sedakov, Artem. / Characteristic functions in a linear oligopoly TU game. Static and Dynamic Game Theory: Foundations and Applications. Birkhäuser Verlag AG, 2018. стр. 219-235 (Static and Dynamic Game Theory: Foundations and Applications).
@inbook{6c1eccd387e941daab72fe5ed3cba5aa,
title = "Characteristic functions in a linear oligopoly TU game",
abstract = "We consider a linear oligopoly TU game without transferable technologies in which the characteristic function is determined from different perspectives. In so-called γ-, δ-, and ζ-games, we study the properties of characteristic functions such as monotonicity, superadditivity, and supermodularity. We also show that these games have nonempty cores of a nested structure when the δ-characteristic function is supermodular.",
author = "Artem Sedakov",
year = "2018",
month = "1",
day = "1",
doi = "10.1007/978-3-319-92988-0_13",
language = "English",
series = "Static and Dynamic Game Theory: Foundations and Applications",
publisher = "Birkh{\"a}user Verlag AG",
pages = "219--235",
booktitle = "Static and Dynamic Game Theory",
address = "Switzerland",

}

Sedakov, A 2018, Characteristic functions in a linear oligopoly TU game. в Static and Dynamic Game Theory: Foundations and Applications. Static and Dynamic Game Theory: Foundations and Applications, Birkhäuser Verlag AG, стр. 219-235. https://doi.org/10.1007/978-3-319-92988-0_13

Characteristic functions in a linear oligopoly TU game. / Sedakov, Artem.

Static and Dynamic Game Theory: Foundations and Applications. Birkhäuser Verlag AG, 2018. стр. 219-235 (Static and Dynamic Game Theory: Foundations and Applications).

Результат исследований: Публикации в книгах, отчётах, сборниках, трудах конференцийглава/раздел

TY - CHAP

T1 - Characteristic functions in a linear oligopoly TU game

AU - Sedakov, Artem

PY - 2018/1/1

Y1 - 2018/1/1

N2 - We consider a linear oligopoly TU game without transferable technologies in which the characteristic function is determined from different perspectives. In so-called γ-, δ-, and ζ-games, we study the properties of characteristic functions such as monotonicity, superadditivity, and supermodularity. We also show that these games have nonempty cores of a nested structure when the δ-characteristic function is supermodular.

AB - We consider a linear oligopoly TU game without transferable technologies in which the characteristic function is determined from different perspectives. In so-called γ-, δ-, and ζ-games, we study the properties of characteristic functions such as monotonicity, superadditivity, and supermodularity. We also show that these games have nonempty cores of a nested structure when the δ-characteristic function is supermodular.

UR - http://www.scopus.com/inward/record.url?scp=85052396474&partnerID=8YFLogxK

U2 - 10.1007/978-3-319-92988-0_13

DO - 10.1007/978-3-319-92988-0_13

M3 - Chapter

AN - SCOPUS:85052396474

T3 - Static and Dynamic Game Theory: Foundations and Applications

SP - 219

EP - 235

BT - Static and Dynamic Game Theory

PB - Birkhäuser Verlag AG

ER -

Sedakov A. Characteristic functions in a linear oligopoly TU game. В Static and Dynamic Game Theory: Foundations and Applications. Birkhäuser Verlag AG. 2018. стр. 219-235. (Static and Dynamic Game Theory: Foundations and Applications). https://doi.org/10.1007/978-3-319-92988-0_13