Chain transitive sets and shadowing

Sergei Yu Pilyugin, Kazuhiro Sakai

Результат исследований: Публикации в книгах, отчётах, сборниках, трудах конференцийглава/разделрецензирование

1 Цитирования (Scopus)

Аннотация

In this chapter, we study relations between the shadowing property of diffeomorphisms on their chain transitive sets and the hyperbolicity of such sets. We prove the following two main results: • Let ⋀ be a closed invariant set of f ϵ Diff1(M). Then f| is chain transitive and C1-stably shadowing in a neighborhood of ⋀ if and only if ⋀ is a hyperbolic basic set (Theorem 4.2.1); • there is a residual set R ⊂ Diff1(M) such that if f ϵ R and ⋀ is a locally maximal chain transitive set of f, then ⋀ is hyperbolic if and only if f | is shadowing (Theorem 4.3.1).

Язык оригиналаанглийский
Название основной публикацииLecture Notes in Mathematics
ИздательSpringer Nature
Страницы181-208
Число страниц28
DOI
СостояниеОпубликовано - 2017

Серия публикаций

НазваниеLecture Notes in Mathematics
Том2193
ISSN (печатное издание)0075-8434

Предметные области Scopus

  • Алгебра и теория чисел

Fingerprint

Подробные сведения о темах исследования «Chain transitive sets and shadowing». Вместе они формируют уникальный семантический отпечаток (fingerprint).

Цитировать