Blind deconvolution of covariance matrix inverses for autoregressive processes

Nina Golyandina, Anatoly Zhigljavsky

Результат исследований: Научные публикации в периодических изданияхстатья

Аннотация

Matrix C can be blindly deconvoluted if there exist matrices A and B such that C=A⁎B, where ⁎ denotes the operation of matrix convolution. We study the problem of matrix deconvolution in the case where matrix C is proportional to the inverse of the autocovariance matrix of an autoregressive process. We show that the deconvolution of such matrices is important in problems of Hankel structured low-rank approximation (HSLRA). In the cases of autoregressive models of orders one and two, we fully characterize the range of parameters where such deconvolution can be performed and provide construction schemes for performing deconvolutions. We also consider general autoregressive models of order p, where we prove that the deconvolution C=A⁎B does not exist if the matrix B is diagonal and its size is larger than p.

Язык оригиналаанглийский
Страницы (с-по)188-211
Число страниц24
ЖурналLinear Algebra and Its Applications
Том593
DOI
СостояниеОпубликовано - 15 мая 2020

    Fingerprint

Предметные области Scopus

  • Алгебра и теория чисел
  • Численный анализ
  • Геометрия и топология
  • Дискретная математика и комбинаторика

Цитировать