Big Data Virtualization: Why and How?

Результат исследований: Научные публикации в периодических изданияхстатья в журнале по материалам конференциирецензирование


The increasing variability, dynamic and heterogenous nature of big data, as well as the flexibility required by data producers and consumers lead to the necessity of organizing access to data without requiring information about its structure or belonging to any particular information system, i.e. data virtualization. Data virtualization complements the concept of a virtual supercomputer, allowing us to consider the computing environment as a single information continuum, where computing tools are part of the general data model and data is considered in the context of three basic components: Integration, analysis, and data presentation. In this paper, we present the concept of unified, generalized and encapsulated representation of data coming from a heterogenous set of data sources, based on the extension of the Logical Data Warehouse (LDW) and the Distributed Data Network in the form of a distributed ledger a- the virtual DLT (vDLT). The main difference between the vDLT and LDW approaches is the decentralized management of data using a consensus mechanism. We discuss data virtualization practices, the methodology of constructing a virtualized data environment, and compare core steps and approaches for each of the two directions.

Язык оригиналаанглийский
Страницы (с-по)11-21
Число страниц11
ЖурналCEUR Workshop Proceedings
СостояниеОпубликовано - 2020
СобытиеIV International Workshop "Data life cycle in physics", DLC-2020 - Москва, Российская Федерация
Продолжительность: 8 июн 202010 июн 2020

Предметные области Scopus

  • Компьютерные науки (все)

Fingerprint Подробные сведения о темах исследования «Big Data Virtualization: Why and How?». Вместе они формируют уникальный семантический отпечаток (fingerprint).