Artificial intelligence-driven phenotyping of zebrafish psychoactive drug responses

Dmitrii V Bozhko, Vladislav O Myrov, Sofia M Kolchanova, Aleksandr I Polovian, Georgii K Galumov, Konstantin A Demin, Konstantin N Zabegalov, Tatiana Strekalova, Murilo S de Abreu, Elena V Petersen, Allan V Kalueff

Результат исследований: Научные публикации в периодических изданияхстатьярецензирование


Zebrafish (Danio rerio) are rapidly emerging in biomedicine as promising tools for disease modelling and drug discovery. The use of zebrafish for neuroscience research is also growing rapidly, necessitating novel reliable and unbiased methods of neurophenotypic data collection and analyses. Here, we applied the artificial intelligence (AI) neural network-based algorithms to a large dataset of adult zebrafish locomotor tracks collected previously in vivo experiments with multiple established psychotropic drugs. We first trained AI to recognize various drugs from a wide range of psychotropic agents tested, and then confirmed prediction accuracy of trained AI by comparing several agents with known similar behavioral and pharmacological profiles. Presenting a framework for innovative neurophenotyping, this proof-of-concept study aims to improve AI-driven movement pattern classification in zebrafish, thereby fostering drug discovery and development utilizing this key model organism.

Язык оригиналаанглийский
Страницы (с-по)110405
ЖурналProgress in Neuro-Psychopharmacology and Biological Psychiatry
СостояниеЭлектронная публикация перед печатью - 25 июл 2021


Подробные сведения о темах исследования «Artificial intelligence-driven phenotyping of zebrafish psychoactive drug responses». Вместе они формируют уникальный семантический отпечаток (fingerprint).