Approximations with polynomial, trigonometric, exponential splines of the third order and boundary value problem

I. G. Burova, E. F. Muzafarova

Результат исследований: Научные публикации в периодических изданияхстатья

1 Цитирования (Scopus)

Аннотация

—This paper is devoted to the construction of local approximations of functions of one and two variables using the polynomial, the trigonometric, and the exponential splines. These splines are useful for visualizing flows of graphic information. Here, we also discuss the parallelization of computations. Some attention is paid to obtaining two-sided estimates of the approximations using interval analysis methods. Particular attention is paid to solving the boundary value problem by using the polynomial splines and the trigonometric splines of the third and fourth order approximation. Using the considered splines, formulas for a numerical differentiation are constructed. These formulas are used to construct computational schemes for solving a parabolic problem. Questions of approximation and stability of the obtained schemes are considered. Numerical examples are presented.

Язык оригиналаанглийский
Страницы (с-по)460-473
Число страниц14
ЖурналInternational Journal of Circuits, Systems and Signal Processing
Том14
DOI
СостояниеОпубликовано - 2020

Предметные области Scopus

  • Обработка сигналов
  • Электротехника и электроника

Fingerprint Подробные сведения о темах исследования «Approximations with polynomial, trigonometric, exponential splines of the third order and boundary value problem». Вместе они формируют уникальный семантический отпечаток (fingerprint).

Цитировать