Approximation by periodic multivariate quasi-projection operators

Yu. Kolomoitsev, A. Krivoshein, M. Skopina

Результат исследований: Научные публикации в периодических изданияхстатья

Аннотация

Approximation properties of periodic quasi-projection operators with matrix dilations are studied. Such operators are generated by a sequence of functions φj and a sequence of distributions/functions φ˜j. Error estimates for sampling-type quasi-projection operators are obtained under the periodic Strang-Fix conditions for φj and the compatibility conditions for φj and φ˜j. These estimates are given in terms of the Fourier coefficients of approximated functions and provide analogs of some known non-periodic results. Under some additional assumptions error estimates are given in other terms in particular using the best approximation. A number of examples are provided.

Язык оригиналаанглийский
Номер статьи124192
ЖурналJournal of Mathematical Analysis and Applications
Том489
Номер выпуска2
Ранняя дата в режиме онлайн4 мая 2020
DOI
СостояниеОпубликовано - 15 сен 2020

Предметные области Scopus

  • Анализ
  • Прикладная математика

Fingerprint Подробные сведения о темах исследования «Approximation by periodic multivariate quasi-projection operators». Вместе они формируют уникальный семантический отпечаток (fingerprint).

Цитировать