Application of non-polynomial splines to solving differential equations

Результат исследований: Научные публикации в периодических изданияхстатья

Аннотация

The application of the local polynomial and non-polynomial to the construction of methods for numerically solving the heat conduction problem is discussed. The non-polynomial splines are used here to approximate the partial derivatives. Formulas for numerical differentiation based on the application of the non-polynomial splines of the fourth order of approximation are constructed. Particular attention is paid to polynomial, trigonometric, exponential, polynomial-trigonometric and polynomial-exponential splines. This approach allows us to construct explicit and implicit difference schemes. The main focus of the paper is on implicit difference scheme. New approximations with splines of the Lagrange and Hermite type with new properties are obtained. These approximations take into account the first and second derivatives of the function being approximated. Numerical examples are given.

Язык оригиналаанглийский
Страницы (с-по)531-548
Число страниц18
ЖурналWSEAS Transactions on Mathematics
Том19
DOI
СостояниеОпубликовано - 2 ноя 2020

Предметные области Scopus

  • Алгебра и теория чисел
  • Эндокринология, диабет и метаболизм
  • Теория вероятности и статистика
  • Дискретная математика и комбинаторика
  • Теория управления и исследование операций
  • Теория оптимизации
  • Вычислительная математика
  • Прикладная математика

Fingerprint Подробные сведения о темах исследования «Application of non-polynomial splines to solving differential equations». Вместе они формируют уникальный семантический отпечаток (fingerprint).

Цитировать