Application of an Autonomous Object Behavior Model to Classify the Cybersecurity State

Viktor V. Semenov, Ilya S. Lebedev, Mikhail E. Sukhoparov, Kseniya I. Salakhutdinova

Результат исследований: Публикации в книгах, отчётах, сборниках, трудах конференцийстатья в сборнике материалов конференциинаучнаярецензирование

9 Цитирования (Scopus)

Аннотация

This paper considers the issues of ensuring the cybersecurity of autonomous objects. Prerequisites that determine the application of additional independent methods for assessing the state of autonomous objects were identified. Side channels were described, which enable the monitoring of the state of individual objects. A transition graph was proposed to show the current state of the object based on data from side channels. The type of sound signals used to analyze and classify the state of information security was also shown. An experiment intended to accumulate statistical information on the various types of unmanned object maneuvers was conducted using two audio recorders. The data obtained was processed using two-layer feed-forward neural networks with sigmoid hidden neurons. The autonomous object behavior model can be used as an additional element to determine the state of cybersecurity. Using a segmented model, it was possible to improve the accuracy of determining the cybersecurity state. The proposed model enabled the identification of differences in the states of autonomous object cybersecurity with probabilities that were, on average, more than 0.8.

Язык оригиналаанглийский
Название основной публикацииInternet of Things, Smart Spaces, and Next Generation Networks and Systems - 19th International Conference, NEW2AN 2019, and 12th Conference, ruSMART 2019, Proceedings
РедакторыOlga Galinina, Sergey Andreev, Yevgeni Koucheryavy, Sergey Balandin
ИздательSpringer Nature
Страницы104-112
Число страниц9
ISBN (печатное издание)9783030308582
DOI
СостояниеОпубликовано - 1 янв 2019
Событие19th International Conference on Next Generation Teletraffic and Wired/Wireless Advanced Networks and Systems, NEW2AN 2019, and 12th Conference on Internet of Things and Smart Spaces, ruSMART 2019 - St. Petersburg, Российская Федерация
Продолжительность: 26 авг 201928 авг 2019

Серия публикаций

НазваниеLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Том11660 LNCS
ISSN (печатное издание)0302-9743
ISSN (электронное издание)1611-3349

конференция

конференция19th International Conference on Next Generation Teletraffic and Wired/Wireless Advanced Networks and Systems, NEW2AN 2019, and 12th Conference on Internet of Things and Smart Spaces, ruSMART 2019
Страна/TерриторияРоссийская Федерация
ГородSt. Petersburg
Период26/08/1928/08/19

Предметные области Scopus

  • Теоретические компьютерные науки
  • Компьютерные науки (все)

Fingerprint

Подробные сведения о темах исследования «Application of an Autonomous Object Behavior Model to Classify the Cybersecurity State». Вместе они формируют уникальный семантический отпечаток (fingerprint).

Цитировать