Analogue of the Hyodo Inequality for the Ramification Depth in Degree p 2 Extensions

S. V. Vostokov, N. V. Haustov, I. B. Zhukov, O. Yu Ivanova, S. S. Afanas’eva

Результат исследований: Научные публикации в периодических изданияхстатьярецензирование

Аннотация

Ramification in complete discrete valuation fields is studied. For the case of a perfect residue field, there is a well-developed theory of ramification groups. Hyodo introduced the concept of ramification depth associated with the different of an extension and obtained an inequality that combines the concept of ramification depth in a degree p2 cyclotomic extension with the concept of ramification depth in a degree p subextension. The paper gives a detailed consideration of the structure of degree p2 extensions that can be obtained by a composite of two degree p extensions. In this case, it is not required that the residue field be perfect. Using the concepts of wild and ferocious extensions and the defect of the main unit, degree p2 extensions are classified and more accurate estimates for the ramification depth are obtained. In a number of cases, exact formulas for ramification depth are presented.

Язык оригиналаанглийский
Страницы (с-по)114-123
Число страниц10
ЖурналVestnik St. Petersburg University: Mathematics
Том51
Номер выпуска2
DOI
СостояниеОпубликовано - 1 апр 2018

Предметные области Scopus

  • Математика (все)

Fingerprint

Подробные сведения о темах исследования «Analogue of the Hyodo Inequality for the Ramification Depth in Degree p <sup>2</sup> Extensions». Вместе они формируют уникальный семантический отпечаток (fingerprint).

Цитировать