An irrational behavior proof condition for multistage multicriteria games

Denis Kuzyutin, Mariya Nikitina

Результат исследований: Публикации в книгах, отчётах, сборниках, трудах конференцийстатья в сборнике материалов конференции

3 Цитирования (Scopus)

Выдержка

We use the payment schedule based approach to ensure stable cooperation in multistage games with vector payoffs. On the example of the Shapley value in multicriteria game it is shown that the irrational behavior proof condition and the balance condition may be incompatible. We design a recurrent payment schedule that satisfies such advantageous properties as the efficiency condition, non-negativity and irrational behavior proofness.

Язык оригиналаанглийский
Название основной публикации2017 Constructive Nonsmooth Analysis and Related Topics (Dedicated to the Memory of V.F. Demyanov), CNSA 2017 - Proceedings
РедакторыL. N. Polyakova
ИздательInstitute of Electrical and Electronics Engineers Inc.
ISBN (электронное издание)9781509062607
DOI
СостояниеОпубликовано - 10 июл 2017
Событие2017 Constructive Nonsmooth Analysis and Related Topics (Dedicated to the Memory of V.F. Demyanov), CNSA 2017: dedicated to the Memory of V.F. Demyanov - Saint-Petersburg, Российская Федерация
Продолжительность: 21 мая 201726 мая 2017
http://www.pdmi.ras.ru/EIMI/2017/CNSA/

Конференция

Конференция2017 Constructive Nonsmooth Analysis and Related Topics (Dedicated to the Memory of V.F. Demyanov), CNSA 2017
Сокращенный заголовокCNSA 2017
СтранаРоссийская Федерация
ГородSaint-Petersburg
Период21/05/1726/05/17
Адрес в сети Интернет

Отпечаток

Multicriteria Games
Schedule
Shapley Value
Nonnegativity
Game

Предметные области Scopus

  • Моделирование и симуляция
  • Анализ
  • Прикладная математика
  • Теория оптимизации

Цитировать

Kuzyutin, D., & Nikitina, M. (2017). An irrational behavior proof condition for multistage multicriteria games. В L. N. Polyakova (Ред.), 2017 Constructive Nonsmooth Analysis and Related Topics (Dedicated to the Memory of V.F. Demyanov), CNSA 2017 - Proceedings [7973979] Institute of Electrical and Electronics Engineers Inc.. https://doi.org/10.1109/CNSA.2017.7973979
Kuzyutin, Denis ; Nikitina, Mariya. / An irrational behavior proof condition for multistage multicriteria games. 2017 Constructive Nonsmooth Analysis and Related Topics (Dedicated to the Memory of V.F. Demyanov), CNSA 2017 - Proceedings. редактор / L. N. Polyakova. Institute of Electrical and Electronics Engineers Inc., 2017.
@inproceedings{e40734f16c7e49efb02e6015622ce795,
title = "An irrational behavior proof condition for multistage multicriteria games",
abstract = "We use the payment schedule based approach to ensure stable cooperation in multistage games with vector payoffs. On the example of the Shapley value in multicriteria game it is shown that the irrational behavior proof condition and the balance condition may be incompatible. We design a recurrent payment schedule that satisfies such advantageous properties as the efficiency condition, non-negativity and irrational behavior proofness.",
author = "Denis Kuzyutin and Mariya Nikitina",
year = "2017",
month = "7",
day = "10",
doi = "10.1109/CNSA.2017.7973979",
language = "English",
editor = "Polyakova, {L. N.}",
booktitle = "2017 Constructive Nonsmooth Analysis and Related Topics (Dedicated to the Memory of V.F. Demyanov), CNSA 2017 - Proceedings",
publisher = "Institute of Electrical and Electronics Engineers Inc.",
address = "United States",

}

Kuzyutin, D & Nikitina, M 2017, An irrational behavior proof condition for multistage multicriteria games. в LN Polyakova (ред.), 2017 Constructive Nonsmooth Analysis and Related Topics (Dedicated to the Memory of V.F. Demyanov), CNSA 2017 - Proceedings., 7973979, Institute of Electrical and Electronics Engineers Inc., Saint-Petersburg, Российская Федерация, 21/05/17. https://doi.org/10.1109/CNSA.2017.7973979

An irrational behavior proof condition for multistage multicriteria games. / Kuzyutin, Denis; Nikitina, Mariya.

2017 Constructive Nonsmooth Analysis and Related Topics (Dedicated to the Memory of V.F. Demyanov), CNSA 2017 - Proceedings. ред. / L. N. Polyakova. Institute of Electrical and Electronics Engineers Inc., 2017. 7973979.

Результат исследований: Публикации в книгах, отчётах, сборниках, трудах конференцийстатья в сборнике материалов конференции

TY - GEN

T1 - An irrational behavior proof condition for multistage multicriteria games

AU - Kuzyutin, Denis

AU - Nikitina, Mariya

PY - 2017/7/10

Y1 - 2017/7/10

N2 - We use the payment schedule based approach to ensure stable cooperation in multistage games with vector payoffs. On the example of the Shapley value in multicriteria game it is shown that the irrational behavior proof condition and the balance condition may be incompatible. We design a recurrent payment schedule that satisfies such advantageous properties as the efficiency condition, non-negativity and irrational behavior proofness.

AB - We use the payment schedule based approach to ensure stable cooperation in multistage games with vector payoffs. On the example of the Shapley value in multicriteria game it is shown that the irrational behavior proof condition and the balance condition may be incompatible. We design a recurrent payment schedule that satisfies such advantageous properties as the efficiency condition, non-negativity and irrational behavior proofness.

UR - http://www.scopus.com/inward/record.url?scp=85027440042&partnerID=8YFLogxK

U2 - 10.1109/CNSA.2017.7973979

DO - 10.1109/CNSA.2017.7973979

M3 - Conference contribution

AN - SCOPUS:85027440042

BT - 2017 Constructive Nonsmooth Analysis and Related Topics (Dedicated to the Memory of V.F. Demyanov), CNSA 2017 - Proceedings

A2 - Polyakova, L. N.

PB - Institute of Electrical and Electronics Engineers Inc.

ER -

Kuzyutin D, Nikitina M. An irrational behavior proof condition for multistage multicriteria games. В Polyakova LN, редактор, 2017 Constructive Nonsmooth Analysis and Related Topics (Dedicated to the Memory of V.F. Demyanov), CNSA 2017 - Proceedings. Institute of Electrical and Electronics Engineers Inc. 2017. 7973979 https://doi.org/10.1109/CNSA.2017.7973979