Algebraic solution of tropical polynomial optimization problems

Результат исследований: Научные публикации в периодических изданияхстатьярецензирование


We consider constrained optimization problems defined in the tropical algebra setting on a linearly ordered, algebraically complete (radicable) idempotent semifield (a semiring with idempotent addition and invertible multiplication). The problems are to minimize the objective functions given by tropical analogues of multivariate Puiseux polynomials, subject to box constraints on the variables. A technique for variable elimination is presented that converts the original optimization problem to a new one in which one variable is removed and the box constraint for this variable is modified. The novel approach may be thought of as an extension of the Fourier–Motzkin elimination method for systems of linear inequalities in ordered fields to the issue of polynomial optimization in ordered tropical semifields. We use this technique to develop a procedure to solve the problem in a finite number of iterations. The procedure includes two phases: backward elimination and forward substitution of variables. We describe the main steps of the procedure, discuss its computational complexity and present numerical examples.
Язык оригиналаанглийский
Номер статьи2472
Число страниц18
Номер выпуска19
СостояниеОпубликовано - 3 окт 2021

Предметные области Scopus

  • Теория оптимизации
  • Алгебра и теория чисел

Ключевые слова

  • tropical algebra
  • idempotent semifield
  • tropical Puiseux polynomial
  • constrained polynomial optimization problem
  • box constraint
  • variable elimination


Подробные сведения о темах исследования «Algebraic solution of tropical polynomial optimization problems». Вместе они формируют уникальный семантический отпечаток (fingerprint).