Accelerating real-time ship motion simulations using general purpose GPU computations

Результат исследований: Публикации в книгах, отчётах, сборниках, трудах конференцийстатья в сборнике материалов конференциинаучнаярецензирование

Аннотация

Software suites for ship simulations are typically used for statistical studies of ship dynamics, but also as a simulator for training ship crew in dangerous situations. One problem that arises during training is speeding-up a part of the session which does not involve actions from the crew. The aim of the study reported here is to accelerate solution of ship motion equations using general purpose computations on GPU. These equations describe dynamics of ship manoeuvring in wavy sea surface, and are central to the simulator programme. The equations are solved numerically via Runge-Kutta-Fehlberg method. Due to high number of floating point operations, computation on GPU achieves considerable speed-up over CPU. High performance solution allows to shorten training sessions and make them more efficient, but also beneficial for statistical studies as it reduces simulation time.

Язык оригиналаанглийский
Название основной публикацииSelected Papers of the 8th International Conference ""Distributed Computing and Grid-Technologies in Science and Education"", GRID 2018
Страницы410-414
Число страниц5
СостояниеОпубликовано - 2018
Событие8th International Conference "Distributed Computing and Grid-Technologies in Science and Education", GRID 2018 - Dubna, Российская Федерация
Продолжительность: 10 сен 201814 сен 2018

Серия публикаций

НазваниеCEUR Workshop Proceedings
ИздательRWTH Aahen University
Том2267
ISSN (печатное издание)1613-0073

конференция

конференция8th International Conference "Distributed Computing and Grid-Technologies in Science and Education", GRID 2018
СтранаРоссийская Федерация
ГородDubna
Период10/09/1814/09/18

Предметные области Scopus

  • Компьютерные науки (все)

Fingerprint Подробные сведения о темах исследования «Accelerating real-time ship motion simulations using general purpose GPU computations». Вместе они формируют уникальный семантический отпечаток (fingerprint).

Цитировать