A spectral Szegő theorem on the real line

Roman Bessonov, Sergey Denisov

Результат исследований: Научные публикации в периодических изданияхстатья

Выдержка

We characterize even measures μ=wdx+μs on the real line R with finite entropy integral [Formula presented] in terms of 2×2 Hamiltonians generated by μ in the sense of the inverse spectral theory. As a corollary, we obtain criterion for spectral measure of Krein string to have converging logarithmic integral.

Язык оригиналаанглийский
Номер статьи106851
ЖурналAdvances in Mathematics
Том359
Ранняя дата в режиме онлайн25 окт 2019
DOI
СостояниеОпубликовано - 7 янв 2020

Отпечаток

Logarithmic integral
Spectral Theorem
Spectral Measure
Integral Formula
Spectral Theory
Real Line
Corollary
Strings
Entropy

Предметные области Scopus

  • Математика (все)

Цитировать

@article{4ea015a51b2a4ffca0cfd68528f93684,
title = "A spectral Szegő theorem on the real line",
abstract = "We characterize even measures μ=wdx+μs on the real line R with finite entropy integral [Formula presented] in terms of 2×2 Hamiltonians generated by μ in the sense of the inverse spectral theory. As a corollary, we obtain criterion for spectral measure of Krein string to have converging logarithmic integral.",
keywords = "Canonical Hamiltonian system, Entropy, Inverse problem, Muckenhoupt class, String equation, Szegő class",
author = "Roman Bessonov and Sergey Denisov",
year = "2020",
month = "1",
day = "7",
doi = "10.1016/j.aim.2019.106851",
language = "English",
volume = "359",
journal = "Advances in Mathematics",
issn = "0001-8708",
publisher = "Elsevier",

}

A spectral Szegő theorem on the real line. / Bessonov, Roman; Denisov, Sergey.

В: Advances in Mathematics, Том 359, 106851, 07.01.2020.

Результат исследований: Научные публикации в периодических изданияхстатья

TY - JOUR

T1 - A spectral Szegő theorem on the real line

AU - Bessonov, Roman

AU - Denisov, Sergey

PY - 2020/1/7

Y1 - 2020/1/7

N2 - We characterize even measures μ=wdx+μs on the real line R with finite entropy integral [Formula presented] in terms of 2×2 Hamiltonians generated by μ in the sense of the inverse spectral theory. As a corollary, we obtain criterion for spectral measure of Krein string to have converging logarithmic integral.

AB - We characterize even measures μ=wdx+μs on the real line R with finite entropy integral [Formula presented] in terms of 2×2 Hamiltonians generated by μ in the sense of the inverse spectral theory. As a corollary, we obtain criterion for spectral measure of Krein string to have converging logarithmic integral.

KW - Canonical Hamiltonian system

KW - Entropy

KW - Inverse problem

KW - Muckenhoupt class

KW - String equation

KW - Szegő class

UR - http://www.scopus.com/inward/record.url?scp=85073968108&partnerID=8YFLogxK

U2 - 10.1016/j.aim.2019.106851

DO - 10.1016/j.aim.2019.106851

M3 - Article

AN - SCOPUS:85073968108

VL - 359

JO - Advances in Mathematics

JF - Advances in Mathematics

SN - 0001-8708

M1 - 106851

ER -