A rational construction of Lie algebras of type E7

Результат исследований: Научные публикации в периодических изданияхстатья

1 цитирование (Scopus)

Выдержка

We give an explicit construction of Lie algebras of type E7 out of a Lie algebra of type D6 with some restrictions. Up to odd degree extensions, every Lie algebra of type E7 arises this way. For Lie algebras that admit a 56-dimensional representation we provide a more symmetric construction based on an observation of Manivel; the input is seven quaternion algebras subject to some relations.

Язык оригиналаанглийский
Страницы (с-по)348-361
Число страниц14
ЖурналJournal of Algebra
Том481
DOI
СостояниеОпубликовано - 2017

Отпечаток

Lie Algebra
Quaternion Algebra
Odd
Restriction

Предметные области Scopus

  • Алгебра и теория чисел

Цитировать

@article{bf92ccd6851e4f9ea2e06683274d7884,
title = "A rational construction of Lie algebras of type E7",
abstract = "We give an explicit construction of Lie algebras of type E7 out of a Lie algebra of type D6 with some restrictions. Up to odd degree extensions, every Lie algebra of type E7 arises this way. For Lie algebras that admit a 56-dimensional representation we provide a more symmetric construction based on an observation of Manivel; the input is seven quaternion algebras subject to some relations.",
keywords = "Algebras with involution, Exceptional Lie algebras, Galois cohomology",
author = "Victor Petrov",
year = "2017",
doi = "10.1016/j.jalgebra.2017.02.030",
language = "English",
volume = "481",
pages = "348--361",
journal = "Journal of Algebra",
issn = "0021-8693",
publisher = "Elsevier",

}

A rational construction of Lie algebras of type E7. / Petrov, Victor.

В: Journal of Algebra, Том 481, 2017, стр. 348-361.

Результат исследований: Научные публикации в периодических изданияхстатья

TY - JOUR

T1 - A rational construction of Lie algebras of type E7

AU - Petrov, Victor

PY - 2017

Y1 - 2017

N2 - We give an explicit construction of Lie algebras of type E7 out of a Lie algebra of type D6 with some restrictions. Up to odd degree extensions, every Lie algebra of type E7 arises this way. For Lie algebras that admit a 56-dimensional representation we provide a more symmetric construction based on an observation of Manivel; the input is seven quaternion algebras subject to some relations.

AB - We give an explicit construction of Lie algebras of type E7 out of a Lie algebra of type D6 with some restrictions. Up to odd degree extensions, every Lie algebra of type E7 arises this way. For Lie algebras that admit a 56-dimensional representation we provide a more symmetric construction based on an observation of Manivel; the input is seven quaternion algebras subject to some relations.

KW - Algebras with involution

KW - Exceptional Lie algebras

KW - Galois cohomology

UR - http://www.scopus.com/inward/record.url?scp=85015973036&partnerID=8YFLogxK

U2 - 10.1016/j.jalgebra.2017.02.030

DO - 10.1016/j.jalgebra.2017.02.030

M3 - Article

AN - SCOPUS:85015973036

VL - 481

SP - 348

EP - 361

JO - Journal of Algebra

JF - Journal of Algebra

SN - 0021-8693

ER -