A perturbation algorithm for the pointers of Franke–Gorini–Kossakowski–Lindblad–Sudarshan equation

Результат исследований: Научные публикации в периодических изданияхстатья

Аннотация

This paper is devoted to the study of behavior of open quantum systems consistently based on the Franke–Gorini–Kossakowski–Lindblad–Sudarshan (FGKLS) equation which covers evolution in situations when decoherence can be distinguished. We focus on the quantum measurement operation which is determined by final stationary states of an open system—so called pointers. We find pointers by applying the FGKLS equation to asymptotically constant density matrix. In seeking pointers, we have been able to propose a perturbative scheme of calculation, if we take the interaction components with an environment to be weak. Thus, the Lindblad operators can be used in some way as expansion parameters for perturbation theory. The scheme we propose is different for the cases of non-degenerate and degenerate Hamiltonian. We illustrate our scheme by particular examples of quantum harmonic oscillator with spin in external magnetic field. The efficiency of the perturbation algorithm is demonstrated by its comparison with the exact solution.

Язык оригиналаанглийский
Номер статьи531
ЖурналEuropean Physical Journal Plus
Том135
Номер выпуска6
DOI
СостояниеОпубликовано - 1 июн 2020

Предметные области Scopus

  • Физика и астрономия (все)

Fingerprint Подробные сведения о темах исследования «A perturbation algorithm for the pointers of Franke–Gorini–Kossakowski–Lindblad–Sudarshan equation». Вместе они формируют уникальный семантический отпечаток (fingerprint).

Цитировать