Действия за год
Аннотация
A multidimensional extremal problem in the idempotent algebra setting is considered which consists in minimizing a nonlinear functional defined on a finite-dimensional semimodule over an idempotent semifield. The problem integrates two other known problems by combining their objective functions into one general function and includes these problems as particular cases. A new solution approach is proposed based on the analysis of linear inequalities and spectral properties of matrices. The approach offers a comprehensive solution to the problem in a closed form that involves performing simple matrix and vector operations in terms of idempotent algebra and provides a basis for the development of efficient computational algorithms and their software implementation.
Язык оригинала | английский |
---|---|
Название основной публикации | Advances in Computer Science: Proc. 6th Europ. Computing Conf. (ECC'12), Prague, Czech Republic, September 24-26, 2012. Vol. 5 of Recent Advances in Computer Engineering Series. |
Издатель | WSEAS - World Scientific and Engineering Academy and Society |
Страницы | 528 стр., 146-151 |
ISBN (печатное издание) | 978-1-61804-126-5 |
Состояние | Опубликовано - 2012 |
Fingerprint
Подробные сведения о темах исследования «A complete closed-form solution to a tropical extremal problem». Вместе они формируют уникальный семантический отпечаток (fingerprint).Виды деятельности
- 1 выступление с устной презентацией
-
A complete closed-form solution to a tropical extremal problem
Николай Кимович Кривулин (Докладчик)
25 сен 2012Деятельность: выступление › выступление с устной презентацией